Transformer-Based Multimodal Fusion for Early Diagnosis of Alzheimer's Disease Using Structural MRI And PET
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230577
摘要

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are both the widely used imaging modalities for early diagnosis of Alzheimer's disease (AD). Combining these two modalities allow using both anatomical and metabolic information for evaluating brain status. However, the commonly-used multimodal fusion strategy, i.e., through channel concatenation, cannot effectively exploit complementary information among these two modalities. To encourage effective information exchange between structural MRI (sMRI) and FDG-PET as used in our study for early AD diagnosis, we propose a novel transformer-based multimodal fusion framework. Specially, our proposed model composes of three parts: 1) Feature extraction based on adversarial training; 2) Feature fusion based on multimodal transformer through cross-attention mechanism; 3) Classification head based on full connection. By resorting to adversarial learning, the feature gap between two modalities becomes smaller, thus easing the cross-attention operation to achieve more effective fusion. In the experiment, we show that our model outperforms other representative models by a large margin. © 2023 IEEE.

会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Multimodal classification Transformer Alzheimer's disease
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62131015] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China[2021B0101420006]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500254
出版者IEEE Computer Society
EI入藏号20233914806175
EI主题词Magnetic resonance imaging
EISSN1945-8452
EI分类号461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.5 Computer Applications ; 741.2 Vision ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333436
专题生物医学工程学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_孙开聪组
通讯作者Shen, Dinggang
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
2.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China
3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhang, Yuanwang,Sun, Kaicong,Liu, Yuxiao,et al. Transformer-Based Multimodal Fusion for Early Diagnosis of Alzheimer's Disease Using Structural MRI And PET[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。