ShanghaiTech University Knowledge Management System
Transformer-Based Multimodal Fusion for Early Diagnosis of Alzheimer's Disease Using Structural MRI And PET | |
2023-04-18 | |
会议录名称 | 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230577 |
摘要 | Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are both the widely used imaging modalities for early diagnosis of Alzheimer's disease (AD). Combining these two modalities allow using both anatomical and metabolic information for evaluating brain status. However, the commonly-used multimodal fusion strategy, i.e., through channel concatenation, cannot effectively exploit complementary information among these two modalities. To encourage effective information exchange between structural MRI (sMRI) and FDG-PET as used in our study for early AD diagnosis, we propose a novel transformer-based multimodal fusion framework. Specially, our proposed model composes of three parts: 1) Feature extraction based on adversarial training; 2) Feature fusion based on multimodal transformer through cross-attention mechanism; 3) Classification head based on full connection. By resorting to adversarial learning, the feature gap between two modalities becomes smaller, thus easing the cross-attention operation to achieve more effective fusion. In the experiment, we show that our model outperforms other representative models by a large margin. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Multimodal classification Transformer Alzheimer's disease |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62131015] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China[2021B0101420006] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001062050500254 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806175 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1945-8452 |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.5 Computer Applications ; 741.2 Vision ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333436 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_孙开聪组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 2.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China 3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Yuanwang,Sun, Kaicong,Liu, Yuxiao,et al. Transformer-Based Multimodal Fusion for Early Diagnosis of Alzheimer's Disease Using Structural MRI And PET[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。