ShanghaiTech University Knowledge Management System
Prototype calibration for long tailed recognition | |
2023-07-10 | |
会议录名称 | 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME)
![]() |
ISSN | 1945-7871 |
卷号 | 2023-July |
页码 | 2123-2128 |
发表状态 | 已发表 |
DOI | 10.1109/ICME55011.2023.00363 |
摘要 | In the real world, data distribution usually presents imbalanced characteristics, such as long-tailed distribution, which is generally divided into the head and tail classes. For tail classes, image features cannot be represented well due to insufficient training samples. It is a vital task to learn discriminative image representation on imbalanced data distribution. In our work, through exploring prototype information, we propose a prototype-based contrastive learning(PCL) loss and prototype-based feature augmentation(PFA) module to improve the accuracy of the classifier on the imbalanced dataset. Specifically, we utilize the classifier parameters to generate learnable embeddings, which can be regarded as the class centers after using metric learning. The PFA module generates the image features of each tail class with the help of head class information. We validate our approach on common long-tailed benchmarks. Our results indicate that the PCL and PFA make the classification model achieve significant performance boosts on these benchmarks. © 2023 IEEE. |
会议录编者/会议主办者 | et al. ; IEEE Circuits and Systems (CAS) ; IEEE Communications (ComSoc) ; IEEE Computer (CS) ; IEEE Signal Processing (SPS) ; Tencent |
关键词 | Long tailed recognition Few-shot learning Prototype Network Contrastive Learning |
会议名称 | 2023 IEEE International Conference on Multimedia and Expo, ICME 2023 |
会议地点 | Brisbane, Australia |
会议日期 | 10-14 July 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233814738670 |
EI主题词 | Image representation |
EISSN | 1945-788X |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision ; 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333423 |
专题 | 创意与艺术学院_PI研究组(P)_武颖娜组 物质科学与技术学院_硕士生 信息科学与技术学院_硕士生 创意与艺术学院_PI研究组(P)_杨锐组 |
作者单位 | ShanghaiTech University, Shanghai, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhongan Wang,Shuai Shi,Yingna Wu,et al. Prototype calibration for long tailed recognition[C]//et al., IEEE Circuits and Systems (CAS), IEEE Communications (ComSoc), IEEE Computer (CS), IEEE Signal Processing (SPS), Tencent:IEEE Computer Society,2023:2123-2128. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。