| |||||||
ShanghaiTech University Knowledge Management System
Secure Gradient Aggregation for Wireless Multi-Server Federated Learning | |
2023-06-25 | |
会议录名称 | 2023 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)
![]() |
ISSN | 2157-8095 |
卷号 | 2023-June |
页码 | 2404-2409 |
发表状态 | 已发表 |
DOI | 10.1109/ISIT54713.2023.10206522 |
摘要 | In this paper, we investigate the secure gradient aggregation problem for K-server wireless Federated learning (FL) systems. We propose a coded aggregation scheme such that any set of up to T colluding servers cannot infer any information about the local updates, including the aggregation value. In our scheme, each user encodes its local update to K confidential messages using Lagrange Coding, and then sends one confidential message to each server using an artificial noise alignment approach. In the downlink, each server delivers the summation of the confidential messages, by which every user can recover the aggregation of local updates. For the proposed scheme, we characterize the uplink and downlink communication latency, and show that the communication latency monotonically decreases with the total number of servers K while increasing with the number of colluding servers T. © 2023 IEEE. |
会议录编者/会议主办者 | Entropy ; Google ; Huawei ; Mediatek ; NSF ; Qualcomm |
关键词 | Wireless communication Wireless sensor networks Federated learning Downlink Encoding Servers Communication system security |
会议名称 | 2023 IEEE International Symposium on Information Theory, ISIT 2023 |
会议地点 | Taipei, Taiwan |
会议日期 | 25-30 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233814753519 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333417 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_吴幼龙组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China 2.IoT Thrust, The Hong Kong University of Science and Technology, Guangzhou, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhenhao Huang,Songze Li,Kai Liang,et al. Secure Gradient Aggregation for Wireless Multi-Server Federated Learning[C]//Entropy, Google, Huawei, Mediatek, NSF, Qualcomm:Institute of Electrical and Electronics Engineers Inc.,2023:2404-2409. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。