消息
×
loading..
A Self-powered Sensing System With Embedded TinyML for Anomaly Detection
2023
会议录名称2023 IEEE 3RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS FOR SUSTAINABLE ENERGY SYSTEMS (IESES)
发表状态已发表
DOI10.1109/IESES53571.2023.10253705
摘要

In the coming Industry 4.0 era, IoT (Internet of Things) technology plays a more and more critical role. Anomaly detection is one of the essential applications for ensuring safe manufacturing, living, etc. It equips the machine with intelligence for perceiving its situation in real-time to prevent disastrous breakdown. Such monitoring systems were usually based on commercial inertial measurement units (IMU) and artificial intelligence (AI) algorithms that run on resource-rich, power-hungry servers, causing a certain amount of energy for sensing and data transmitting. In this paper, we introduce a novel self-powered sensing system with tiny machine learning (TinyML) technique for anomaly detection. A lightweight piezoelectric self-powered sensor (SPS) is utilized to substitute the IMU. The system runs on a low-cost embedded system, realizing the low-power in-situ inferring. A rich dataset has been collected on a vibration platform and analyzed by six well-known machine-learning models. A compressed deep neuron network (DNN) with three hidden layers achieves an accuracy of 97.6% given only 8-point normalized SPS data. The TinyML model is then deployed on embedded systems for on-device inferring and condition-based monitoring. Power measurement is conducted to compare the systems based on an IMU and an SPS. It has shown that the proposed self-powered sensing approach can save up to 66.74% of energy. The system provides a valuable reference for realizing pervasive sensing and ubiquitous AI.

关键词Self-powered sensing tiny machine learning anomaly detection AIoT
会议名称IESES 2023
会议地点Shanhai, China
会议日期26-28 July 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234214925478
EI主题词Anomaly detection
EI分类号461.4 Ergonomics and Human Factors Engineering ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/329033
专题信息科学与技术学院
信息科学与技术学院_PI研究组_梁俊睿组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zijie Chen,Yiming Gao,Junrui Liang. A Self-powered Sensing System With Embedded TinyML for Anomaly Detection[C]:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zijie Chen]的文章
[Yiming Gao]的文章
[Junrui Liang]的文章
百度学术
百度学术中相似的文章
[Zijie Chen]的文章
[Yiming Gao]的文章
[Junrui Liang]的文章
必应学术
必应学术中相似的文章
[Zijie Chen]的文章
[Yiming Gao]的文章
[Junrui Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。