ShanghaiTech University Knowledge Management System
Efficient Sparse Reduced-Rank Regression With Covariance Estimation | |
2023 | |
会议录名称 | IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS |
ISSN | 2373-0803 |
卷号 | 2023-July |
页码 | 46-50 |
发表状态 | 已发表 |
DOI | 10.1109/SSP53291.2023.10208069 |
摘要 | Multivariate linear regression is a fundamental model widely used in many fields of signal processing and machine learning. To enhance its interpretability and predicting performance, many approaches have been developed. Among them, the sparse reduced-rank regression with covariance estimation (SRRRCE) method has been shown to be promising. SRRRCE is powerful, which jointly considers the dimension reduction and variable selection of the regression coefficient, as well as a covariance selection target. In this paper, we will propose a new optimization formulation for SRRRCE by modifying the variable coupling constraint in the existing formulation. For efficient problem solving, a convergent single-loop algorithm based on the block majorization-minimization algorithmic framework is developed. Numerical experiments demonstrate the proposed estimation method possesses better prediction performance and faster convergence speed compared to the existing one. © 2023 IEEE. |
会议举办国 | IEEE; IEEE Signal Processing Society |
会议录编者/会议主办者 | IEEE ; IEEE Signal Processing Society |
关键词 | Convergence of numerical methods Signal processing Covariance estimation Covariance selection Estimation methods Group sparsities Low-rank Majorization-minimization Minimisation Multivariate linear regressions Multivariate regression Reduced rank regression |
会议名称 | 22nd IEEE Statistical Signal Processing Workshop, SSP 2023 |
会议地点 | Hanoi, Viet nam |
会议日期 | July 2, 2023 - July 5, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233514649977 |
EI主题词 | Regression analysis |
EI分类号 | 716.1 Information Theory and Signal Processing ; 921.6 Numerical Methods ; 922.2 Mathematical Statistics |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325845 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_赵子平组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Fengpei Li,Ziping Zhao. Efficient Sparse Reduced-Rank Regression With Covariance Estimation[C]//IEEE, IEEE Signal Processing Society:IEEE Computer Society,2023:46-50. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fengpei Li]的文章 |
[Ziping Zhao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fengpei Li]的文章 |
[Ziping Zhao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fengpei Li]的文章 |
[Ziping Zhao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。