ShanghaiTech University Knowledge Management System
HybridCap: Inertia-Aid Monocular Capture of Challenging Human Motions | |
2023-06-27 | |
会议录名称 | PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023 |
卷号 | 37 |
页码 | 1539-1548 |
发表状态 | 正式接收 |
摘要 | Monocular 3D motion capture (mocap) is beneficial to many applications. The use of a single camera, however, often fails to handle occlusions of different body parts and hence it is limited to capture relatively simple movements. We present a light-weight, hybrid mocap technique called HybridCap that augments the camera with only 4 Inertial Measurement Units (IMUs) in a learning-and-optimization framework. We first employ a weakly-supervised and hierarchical motion inference module based on cooperative pure residual recurrent blocks that serve as limb, body and root trackers as well as an inverse kinematics solver. Our network effectively narrows the search space of plausible motions via coarse-to-fine pose estimation and manages to tackle challenging movements with high efficiency. We further develop a hybrid optimization scheme that combines inertial feedback and visual cues to improve tracking accuracy. Extensive experiments on various datasets demonstrate HybridCap can robustly handle challenging movements ranging from fitness actions to Latin dance. It also achieves real-time performance up to 60 fps with state-of-the-art accuracy. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). |
会议举办国 | Association for the Advancement of Artificial Intelligence |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Artificial intelligence Cameras 3D motion capture Body parts Human motions Inertial measurements units Light weight Module-based Motion capture Optimization framework Simple++ Single cameras |
会议名称 | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
会议地点 | Washington, DC, United states |
会议日期 | February 7, 2023 - February 14, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | AAAI Press |
EI入藏号 | 20233314552074 |
EI主题词 | Inverse kinematics |
EI分类号 | 723.4 Artificial Intelligence ; 742.2 Photographic Equipment ; 931.1 Mechanics |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325831 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_汪婧雅组 |
通讯作者 | Xu, Lan |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China; 2.Shanghai Frontiers Science Center of Human-centered Artificial Intelligence, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liang, Han,He, Yannan,Zhao, Chengfeng,et al. HybridCap: Inertia-Aid Monocular Capture of Challenging Human Motions[C]//Association for the Advancement of Artificial Intelligence:AAAI Press,2023:1539-1548. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。