HybridCap: Inertia-Aid Monocular Capture of Challenging Human Motions
2023-06-27
会议录名称PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023
卷号37
页码1539-1548
发表状态正式接收
摘要

Monocular 3D motion capture (mocap) is beneficial to many applications. The use of a single camera, however, often fails to handle occlusions of different body parts and hence it is limited to capture relatively simple movements. We present a light-weight, hybrid mocap technique called HybridCap that augments the camera with only 4 Inertial Measurement Units (IMUs) in a learning-and-optimization framework. We first employ a weakly-supervised and hierarchical motion inference module based on cooperative pure residual recurrent blocks that serve as limb, body and root trackers as well as an inverse kinematics solver. Our network effectively narrows the search space of plausible motions via coarse-to-fine pose estimation and manages to tackle challenging movements with high efficiency. We further develop a hybrid optimization scheme that combines inertial feedback and visual cues to improve tracking accuracy. Extensive experiments on various datasets demonstrate HybridCap can robustly handle challenging movements ranging from fitness actions to Latin dance. It also achieves real-time performance up to 60 fps with state-of-the-art accuracy. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org).

会议举办国Association for the Advancement of Artificial Intelligence
会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Artificial intelligence Cameras 3D motion capture Body parts Human motions Inertial measurements units Light weight Module-based Motion capture Optimization framework Simple++ Single cameras
会议名称37th AAAI Conference on Artificial Intelligence, AAAI 2023
会议地点Washington, DC, United states
会议日期February 7, 2023 - February 14, 2023
收录类别EI
语种英语
出版者AAAI Press
EI入藏号20233314552074
EI主题词Inverse kinematics
EI分类号723.4 Artificial Intelligence ; 742.2 Photographic Equipment ; 931.1 Mechanics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325831
专题信息科学与技术学院
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_汪婧雅组
通讯作者Xu, Lan
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China;
2.Shanghai Frontiers Science Center of Human-centered Artificial Intelligence, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liang, Han,He, Yannan,Zhao, Chengfeng,et al. HybridCap: Inertia-Aid Monocular Capture of Challenging Human Motions[C]//Association for the Advancement of Artificial Intelligence:AAAI Press,2023:1539-1548.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
百度学术
百度学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
必应学术
必应学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。