Fraud's Bargain Attacks to Textual Classifiers via Metropolis-Hasting Sampling
2023-06-27
会议录名称PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023
卷号37
页码16290-16291
发表状态正式接收
摘要

Recent studies on adversarial examples expose vulnerabilities of natural language processing (NLP) models. Existing techniques for generating adversarial examples are typically driven by deterministic heuristic rules that are agnostic to the optimal adversarial examples, a strategy that often results in attack failures. To this end, this research proposes Fraud's Bargain Attack (FBA), which utilizes a novel randomization mechanism to enlarge the searching space and enables high-quality adversarial examples to be generated with high probabilities. FBA applies the Metropolis-Hasting algorithm to enhance the selection of adversarial examples from all candidates proposed by a customized Word Manipulation Process (WMP). WMP perturbs one word at a time via insertion, removal, or substitution in a contextual-aware manner. Extensive experiments demonstrate that FBA outperforms the baselines in terms of attack success rate and imperceptibility. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

会议举办国Association for the Advancement of Artificial Intelligence
会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Artificial intelligence Natural language processing systems Deterministic heuristics Heuristic rules High probability High quality Language processing Metropolis-Hastings samplings Natural languages Processing model Randomisation Searching spaces
会议名称37th AAAI Conference on Artificial Intelligence, AAAI 2023
会议地点Washington, DC, United states
会议日期February 7, 2023 - February 14, 2023
收录类别EI
语种英语
出版者AAAI Press
EI入藏号20233414594829
EI主题词Crime
EI分类号723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 971 Social Sciences
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325830
专题信息科学与技术学院_PI研究组_宋富组
作者单位
1.University of Technology Sydney, 15 Broadway, Ultimo; NSW; 2007, Australia;
2.ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
推荐引用方式
GB/T 7714
Ni, Mingze,Sun, Zhensu,Liu, Wei. Fraud's Bargain Attacks to Textual Classifiers via Metropolis-Hasting Sampling[C]//Association for the Advancement of Artificial Intelligence:AAAI Press,2023:16290-16291.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ni, Mingze]的文章
[Sun, Zhensu]的文章
[Liu, Wei]的文章
百度学术
百度学术中相似的文章
[Ni, Mingze]的文章
[Sun, Zhensu]的文章
[Liu, Wei]的文章
必应学术
必应学术中相似的文章
[Ni, Mingze]的文章
[Sun, Zhensu]的文章
[Liu, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。