ShanghaiTech University Knowledge Management System
Fraud's Bargain Attacks to Textual Classifiers via Metropolis-Hasting Sampling | |
2023-06-27 | |
会议录名称 | PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023 |
卷号 | 37 |
页码 | 16290-16291 |
发表状态 | 正式接收 |
摘要 | Recent studies on adversarial examples expose vulnerabilities of natural language processing (NLP) models. Existing techniques for generating adversarial examples are typically driven by deterministic heuristic rules that are agnostic to the optimal adversarial examples, a strategy that often results in attack failures. To this end, this research proposes Fraud's Bargain Attack (FBA), which utilizes a novel randomization mechanism to enlarge the searching space and enables high-quality adversarial examples to be generated with high probabilities. FBA applies the Metropolis-Hasting algorithm to enhance the selection of adversarial examples from all candidates proposed by a customized Word Manipulation Process (WMP). WMP perturbs one word at a time via insertion, removal, or substitution in a contextual-aware manner. Extensive experiments demonstrate that FBA outperforms the baselines in terms of attack success rate and imperceptibility. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. |
会议举办国 | Association for the Advancement of Artificial Intelligence |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Artificial intelligence Natural language processing systems Deterministic heuristics Heuristic rules High probability High quality Language processing Metropolis-Hastings samplings Natural languages Processing model Randomisation Searching spaces |
会议名称 | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
会议地点 | Washington, DC, United states |
会议日期 | February 7, 2023 - February 14, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | AAAI Press |
EI入藏号 | 20233414594829 |
EI主题词 | Crime |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 971 Social Sciences |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325830 |
专题 | 信息科学与技术学院_PI研究组_宋富组 |
作者单位 | 1.University of Technology Sydney, 15 Broadway, Ultimo; NSW; 2007, Australia; 2.ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China |
推荐引用方式 GB/T 7714 | Ni, Mingze,Sun, Zhensu,Liu, Wei. Fraud's Bargain Attacks to Textual Classifiers via Metropolis-Hasting Sampling[C]//Association for the Advancement of Artificial Intelligence:AAAI Press,2023:16290-16291. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ni, Mingze]的文章 |
[Sun, Zhensu]的文章 |
[Liu, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ni, Mingze]的文章 |
[Sun, Zhensu]的文章 |
[Liu, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ni, Mingze]的文章 |
[Sun, Zhensu]的文章 |
[Liu, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。