消息
×
loading..
OTTM: an automated classification tool for translational drug discovery from omics data
2023-08-01
发表期刊BRIEFINGS IN BIOINFORMATICS (IF:6.8[JCR-2023],7.9[5-Year])
ISSN1467-5463
EISSN1477-4054
发表状态已发表
DOI10.1093/bib/bbad301
摘要

Omics data from clinical samples are the predominant source of target discovery and drug development. Typically, hundreds or thousands of differentially expressed genes or proteins can be identified from omics data. This scale of possibilities is overwhelming for target discovery and validation using biochemical or cellular experiments. Most of these proteins and genes have no corresponding drugs or even active compounds. Moreover, a proportion of them may have been previously reported as being relevant to the disease of interest. To facilitate translational drug discovery from omics data, we have developed a new classification tool named Omics and Text driven Translational Medicine (OTTM). This tool can markedly narrow the range of proteins or genes that merit further validation via drug availability assessment and literature mining. For the 4489 candidate proteins identified in our previous proteomics study, OTTM recommended 40 FDA-approved or clinical trial drugs. Of these, 15 are available commercially and were tested on hepatocellular carcinoma Hep-G2 cells. Two drugs-tafenoquine succinate (an FDA-approved antimalarial drug targeting CYC1) and branaplam (a Phase 3 clinical drug targeting SMN1 for the treatment of spinal muscular atrophy)-showed potent inhibitory activity against Hep-G2 cell viability, suggesting that CYC1 and SMN1 may be potential therapeutic target proteins for hepatocellular carcinoma. In summary, OTTM is an efficient classification tool that can accelerate the discovery of effective drugs and targets using thousands of candidate proteins identified from omics data. The online and local versions of OTTM are available at .

关键词OTTM omics data translational drug discovery literature mining hepatocellular carcinoma
URL查看原文
收录类别SCI
语种英语
资助项目National Key Ramp ; D Program of China[
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号WOS:001050594900001
出版者OXFORD UNIV PRESS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/323570
专题生命科学与技术学院
生命科学与技术学院_特聘教授组_陈凯先组
生命科学与技术学院_硕士生
共同第一作者Zhang, Bei; Wang, Siqi
通讯作者Luo, Cheng; Sun, Aihua; Zhang, Hao
作者单位
1.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
3.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
4.Beijing Proteome Res Ctr, State Key Lab Prote, Beijing, Peoples R China
5.Natl Ctr Prot Sci Beijing, Beijing, Peoples R China
6.Nanjing Univ Chinese Med, Sch Chinese Mat Med, Nanjing 210023, Peoples R China
7.Chinese Acad Sci, Shanghai Inst Materia Med, Chem Biol Res Ctr, Shanghai 201203, Peoples R China
8.Chinese Acad Sci, Shanghai Inst Mat Med, Chem Biol Res Ctr, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
9.Beijing Inst Life, Beijing Proteome Res Ctr, Natl Ctr Prot Sci Beijing, State Key Lab Prote, Beijing, Peoples R China
10.Chinese Acad Med Sci, Res Unit Prote Driven Canc Precis Med, Shanghai, Peoples R China
第一作者单位生命科学与技术学院
第一作者的第一单位生命科学与技术学院
推荐引用方式
GB/T 7714
Yang, Xiaobo,Zhang, Bei,Wang, Siqi,et al. OTTM: an automated classification tool for translational drug discovery from omics data[J]. BRIEFINGS IN BIOINFORMATICS,2023.
APA Yang, Xiaobo.,Zhang, Bei.,Wang, Siqi.,Lu, Ye.,Chen, Kaixian.,...&Zhang, Hao.(2023).OTTM: an automated classification tool for translational drug discovery from omics data.BRIEFINGS IN BIOINFORMATICS.
MLA Yang, Xiaobo,et al."OTTM: an automated classification tool for translational drug discovery from omics data".BRIEFINGS IN BIOINFORMATICS (2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Xiaobo]的文章
[Zhang, Bei]的文章
[Wang, Siqi]的文章
百度学术
百度学术中相似的文章
[Yang, Xiaobo]的文章
[Zhang, Bei]的文章
[Wang, Siqi]的文章
必应学术
必应学术中相似的文章
[Yang, Xiaobo]的文章
[Zhang, Bei]的文章
[Wang, Siqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1093@bib@bbad301.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。