High-throughput and machine learning approaches for the discovery of metal organic frameworks
2023-06-01
发表期刊APL MATERIALS (IF:5.3[JCR-2023],5.5[5-Year])
EISSN2166-532X
卷号11期号:6
DOI10.1063/5.0147650
摘要Metal-organic frameworks (MOFs) are promising nanoporous materials with diverse applications. Traditional material discovery based on intensive manual experiments has certain limitations on efficiency and effectiveness when faced with nearly infinite material space. The current situation offers an opportunity for high-throughput (HT) and machine learning (ML) approaches, including computational and experimental methods, as they have greatly improved the efficiency of MOF screening and discovery and have the capacity to deal with the enormous growth of data. In this review, we discuss the research progress in HT computation and experiments and their effect on MOF screening and discovery. We also highlight how ML-based approaches and the integration of HT methods with ML algorithms accelerate MOF design. In addition, we provide our insights on the future capability of data-driven techniques for MOF discovery, despite facing some knowledge gaps as an obstacle. © 2023 Author(s).
关键词Machine learning Metal-Organic Frameworks Porous materials Current situation Diverse applications Experimental methods High-throughput Infinite material Machine learning approaches Material space Metalorganic frameworks (MOFs) Nanoporous Materials Traditional materials
URL查看原文
收录类别EI
语种英语
出版者American Institute of Physics Inc.
EI入藏号20232314194618
EI主题词Efficiency
EI分类号531.1 Metallurgy ; 723.4 Artificial Intelligence ; 804.1 Organic Compounds ; 913.1 Production Engineering ; 951 Materials Science
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312343
专题物质科学与技术学院
物质科学与技术学院_硕士生
物质科学与技术学院_博士生
物质科学与技术学院_PI研究组_姜珊组
物质科学与技术学院_PI研究组_赵英博组
通讯作者Zhang, Xiangyu; Jiang, Shan
作者单位
School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Xiangyu,Xu, Zezhao,Wang, Zidi,et al. High-throughput and machine learning approaches for the discovery of metal organic frameworks[J]. APL MATERIALS,2023,11(6).
APA Zhang, Xiangyu,Xu, Zezhao,Wang, Zidi,Liu, Huiyu,Zhao, Yingbo,&Jiang, Shan.(2023).High-throughput and machine learning approaches for the discovery of metal organic frameworks.APL MATERIALS,11(6).
MLA Zhang, Xiangyu,et al."High-throughput and machine learning approaches for the discovery of metal organic frameworks".APL MATERIALS 11.6(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiangyu]的文章
[Xu, Zezhao]的文章
[Wang, Zidi]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiangyu]的文章
[Xu, Zezhao]的文章
[Wang, Zidi]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiangyu]的文章
[Xu, Zezhao]的文章
[Wang, Zidi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1063@5.0147650.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。