ShanghaiTech University Knowledge Management System
High-throughput and machine learning approaches for the discovery of metal organic frameworks | |
2023-06-01 | |
发表期刊 | APL MATERIALS (IF:5.3[JCR-2023],5.5[5-Year]) |
EISSN | 2166-532X |
卷号 | 11期号:6 |
DOI | 10.1063/5.0147650 |
摘要 | Metal-organic frameworks (MOFs) are promising nanoporous materials with diverse applications. Traditional material discovery based on intensive manual experiments has certain limitations on efficiency and effectiveness when faced with nearly infinite material space. The current situation offers an opportunity for high-throughput (HT) and machine learning (ML) approaches, including computational and experimental methods, as they have greatly improved the efficiency of MOF screening and discovery and have the capacity to deal with the enormous growth of data. In this review, we discuss the research progress in HT computation and experiments and their effect on MOF screening and discovery. We also highlight how ML-based approaches and the integration of HT methods with ML algorithms accelerate MOF design. In addition, we provide our insights on the future capability of data-driven techniques for MOF discovery, despite facing some knowledge gaps as an obstacle. © 2023 Author(s). |
关键词 | Machine learning Metal-Organic Frameworks Porous materials Current situation Diverse applications Experimental methods High-throughput Infinite material Machine learning approaches Material space Metalorganic frameworks (MOFs) Nanoporous Materials Traditional materials |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | American Institute of Physics Inc. |
EI入藏号 | 20232314194618 |
EI主题词 | Efficiency |
EI分类号 | 531.1 Metallurgy ; 723.4 Artificial Intelligence ; 804.1 Organic Compounds ; 913.1 Production Engineering ; 951 Materials Science |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312343 |
专题 | 物质科学与技术学院 物质科学与技术学院_硕士生 物质科学与技术学院_博士生 物质科学与技术学院_PI研究组_姜珊组 物质科学与技术学院_PI研究组_赵英博组 |
通讯作者 | Zhang, Xiangyu; Jiang, Shan |
作者单位 | School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Xiangyu,Xu, Zezhao,Wang, Zidi,et al. High-throughput and machine learning approaches for the discovery of metal organic frameworks[J]. APL MATERIALS,2023,11(6). |
APA | Zhang, Xiangyu,Xu, Zezhao,Wang, Zidi,Liu, Huiyu,Zhao, Yingbo,&Jiang, Shan.(2023).High-throughput and machine learning approaches for the discovery of metal organic frameworks.APL MATERIALS,11(6). |
MLA | Zhang, Xiangyu,et al."High-throughput and machine learning approaches for the discovery of metal organic frameworks".APL MATERIALS 11.6(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。