| |||||||
ShanghaiTech University Knowledge Management System
Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING (IF:4.2[JCR-2023],4.7[5-Year]) |
ISSN | 2573-0436 |
EISSN | 2333-9403 |
卷号 | 9页码:517-529 |
发表状态 | 已发表 |
DOI | 10.1109/TCI.2023.3281196 |
摘要 | Sparse-view Computed Tomography (SVCT) has great potential for decreasing patient radiation exposure dose during scanning. In this work, we propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifact-free CT image from the acquired SV sinogram by solving the inverse problem of tomography imaging. To solve the under-determined inverse imaging problem, we first introduce an implicit neural representation (INR) network to constrain the solution space via image continuity prior. And inspired by the relationship between linear algebra and inverse problems, we propose a novel re-projection strategy to generate a dense view sinogram from the initial solution, which significantly improves the rank of the linear equation system and produces a more stable CT image solution space. Specially, the desired CT image is represented as an implicit function of the two-dimensional spatial coordinate to directly approximate the SV sinogram through the CT imaging forward model. Then, a dense-view sinogram is generated from the fine-trained INR network. The final CT reconstruction is reconstructed by applying Filtered Back Projection (FBP) to the generated dense-view sinogram. Additionally, we integrate the recent hash encoding into our SCOPE model, which efficiently accelerates the model training process. We evaluate SCOPE in parallel and fan X-ray beam SVCT reconstruction tasks. Our experiment results demonstrate that the re-projection strategy significantly improves the image reconstruction quality (+3 dB for PSNR at least). The proposed SCOPE model provides state-of-the-art reconstruction results compared to two latest INR-based methods and two well-popular supervised DL methods for the SV CT image reconstruction. |
关键词 | Computed tomography Image reconstruction Mathematical models X-ray imaging Training Inverse problems Image coding Sparse-view computed tomography inverse imaging problem self-supervised learning implicit neural representation |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62071299","61901256","91949120"] |
WOS研究方向 | Engineering ; Imaging Science & Photographic Technology |
WOS类目 | Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001004182700003 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20232414219599 |
EI主题词 | Inverse problems |
EI分类号 | 723.5 Computer Applications ; 921.1 Algebra ; 921.2 Calculus |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312306 |
专题 | 信息科学与技术学院 iHuman研究所 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张玉瑶组 |
通讯作者 | Zhang, Yuyao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China 3.Univ Chinese Acad Sci, Beijing 101408, Peoples R China 4.Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200127, Peoples R China 5.Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200127, Peoples R China 6.ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院; iHuman研究所 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wu, Qing,Feng, Ruimin,Wei, Hongjiang,et al. Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography[J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,2023,9:517-529. |
APA | Wu, Qing,Feng, Ruimin,Wei, Hongjiang,Yu, Jingyi,&Zhang, Yuyao.(2023).Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography.IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,9,517-529. |
MLA | Wu, Qing,et al."Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography".IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 9(2023):517-529. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。