消息
×
loading..
Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography
2023
发表期刊IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING (IF:4.2[JCR-2023],4.7[5-Year])
ISSN2573-0436
EISSN2333-9403
卷号9页码:517-529
发表状态已发表
DOI10.1109/TCI.2023.3281196
摘要Sparse-view Computed Tomography (SVCT) has great potential for decreasing patient radiation exposure dose during scanning. In this work, we propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifact-free CT image from the acquired SV sinogram by solving the inverse problem of tomography imaging. To solve the under-determined inverse imaging problem, we first introduce an implicit neural representation (INR) network to constrain the solution space via image continuity prior. And inspired by the relationship between linear algebra and inverse problems, we propose a novel re-projection strategy to generate a dense view sinogram from the initial solution, which significantly improves the rank of the linear equation system and produces a more stable CT image solution space. Specially, the desired CT image is represented as an implicit function of the two-dimensional spatial coordinate to directly approximate the SV sinogram through the CT imaging forward model. Then, a dense-view sinogram is generated from the fine-trained INR network. The final CT reconstruction is reconstructed by applying Filtered Back Projection (FBP) to the generated dense-view sinogram. Additionally, we integrate the recent hash encoding into our SCOPE model, which efficiently accelerates the model training process. We evaluate SCOPE in parallel and fan X-ray beam SVCT reconstruction tasks. Our experiment results demonstrate that the re-projection strategy significantly improves the image reconstruction quality (+3 dB for PSNR at least). The proposed SCOPE model provides state-of-the-art reconstruction results compared to two latest INR-based methods and two well-popular supervised DL methods for the SV CT image reconstruction.
关键词Computed tomography Image reconstruction Mathematical models X-ray imaging Training Inverse problems Image coding Sparse-view computed tomography inverse imaging problem self-supervised learning implicit neural representation
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China["62071299","61901256","91949120"]
WOS研究方向Engineering ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号WOS:001004182700003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20232414219599
EI主题词Inverse problems
EI分类号723.5 Computer Applications ; 921.1 Algebra ; 921.2 Calculus
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312306
专题信息科学与技术学院
iHuman研究所
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_张玉瑶组
通讯作者Zhang, Yuyao
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
4.Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200127, Peoples R China
5.Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200127, Peoples R China
6.ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院;  iHuman研究所
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wu, Qing,Feng, Ruimin,Wei, Hongjiang,et al. Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography[J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,2023,9:517-529.
APA Wu, Qing,Feng, Ruimin,Wei, Hongjiang,Yu, Jingyi,&Zhang, Yuyao.(2023).Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography.IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,9,517-529.
MLA Wu, Qing,et al."Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography".IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 9(2023):517-529.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Qing]的文章
[Feng, Ruimin]的文章
[Wei, Hongjiang]的文章
百度学术
百度学术中相似的文章
[Wu, Qing]的文章
[Feng, Ruimin]的文章
[Wei, Hongjiang]的文章
必应学术
必应学术中相似的文章
[Wu, Qing]的文章
[Feng, Ruimin]的文章
[Wei, Hongjiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TCI.2023.3281196.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。