ShanghaiTech University Knowledge Management System
Dual-Neighborhood Feature Aggregation Network for Point Cloud Semantic Segmentation | |
2022 | |
会议录名称 | PROCEEDINGS - INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI |
ISSN | 1082-3409 |
卷号 | 2022-October |
页码 | 76-81 |
发表状态 | 已发表 |
DOI | 10.1109/ICTAI56018.2022.00020 |
摘要 | Neighborhood construction plays a key role in point cloud processing. However, existing models only use a single neighborhood construction method to extract neighborhood features, which limits their scene understanding ability. In this paper, we propose a learnable Dual-Neighborhood Feature Aggregation (DNFA) module embedded in the encoder that builds and aggregates comprehensive surrounding knowledge of point clouds. In this module, we first construct two kinds of neighborhoods and design corresponding feature enhancement blocks, including a Basic Local Structure Encoding (BLSE) block and an Extended Context Encoding (ECE) block. The two blocks mine structural and contextual cues for enhancing neighborhood features, respectively. Second, we propose a Geometry-Aware Compound Aggregation (GACA) block, which introduces a functionally complementary compound pooling strategy to aggregate richer neighborhood features. To fully learn the neighborhood distribution, we absorb the geometric location information during the aggregation process. The proposed module is integrated into an MLP-based large-scale 3D processing architecture, which constitutes a 3D semantic segmentation network called DNFA-Net. Extensive experiments on public datasets containing indoor and outdoor scenes validate the superiority of DNFA-Net. © 2022 IEEE. |
关键词 | Aggregates Computer architecture Computer vision Encoding (symbols) Semantics Signal encoding 3d semantic segmentation Compound pooling Dual neighborhood construction Encodings Feature aggregation Feature enhancement Neighborhood construction Neighbourhood Point-clouds Semantic segmentation |
会议名称 | 34th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | Virtual, Online, China |
会议日期 | October 31, 2022 - November 2, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Science and Technology Major Project from Minister of Science and Technology, China[2018AAA0103100] ; National Natural Science Foundation of China[61873255] ; Shanghai Municipal Science and Technology Major Project (ZHANGJIANG LAB)[2018SHZDZX01] ; Youth Innovation Promotion Association, Chinese Academy of Sciences[2021233] ; Shanghai Academic Research Leader[22XD1424500] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:000992544400012 |
出版者 | IEEE Computer Society |
EI入藏号 | 20231914055205 |
EI主题词 | Semantic Segmentation |
EI分类号 | 406 Highway Engineering ; 412.2 Concrete Reinforcements ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/306502 |
专题 | 信息科学与技术学院_特聘教授组_张晓林组 |
通讯作者 | Zhu, Dongchen |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Bion Vis Syst Lab, Shanghai 200050, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.ShanghaiTech Univ, Sch Informat & Technol, Shanghai 200050, Peoples R China 4.Xiongan Inst Innovat, Xiongan 071700, Peoples R China 5.Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Minghong,Zhang, Guanghui,Shi, Wenjun,et al. Dual-Neighborhood Feature Aggregation Network for Point Cloud Semantic Segmentation[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:76-81. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。