Dual-Neighborhood Feature Aggregation Network for Point Cloud Semantic Segmentation
2022
会议录名称PROCEEDINGS - INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI
ISSN1082-3409
卷号2022-October
页码76-81
发表状态已发表
DOI10.1109/ICTAI56018.2022.00020
摘要

Neighborhood construction plays a key role in point cloud processing. However, existing models only use a single neighborhood construction method to extract neighborhood features, which limits their scene understanding ability. In this paper, we propose a learnable Dual-Neighborhood Feature Aggregation (DNFA) module embedded in the encoder that builds and aggregates comprehensive surrounding knowledge of point clouds. In this module, we first construct two kinds of neighborhoods and design corresponding feature enhancement blocks, including a Basic Local Structure Encoding (BLSE) block and an Extended Context Encoding (ECE) block. The two blocks mine structural and contextual cues for enhancing neighborhood features, respectively. Second, we propose a Geometry-Aware Compound Aggregation (GACA) block, which introduces a functionally complementary compound pooling strategy to aggregate richer neighborhood features. To fully learn the neighborhood distribution, we absorb the geometric location information during the aggregation process. The proposed module is integrated into an MLP-based large-scale 3D processing architecture, which constitutes a 3D semantic segmentation network called DNFA-Net. Extensive experiments on public datasets containing indoor and outdoor scenes validate the superiority of DNFA-Net. © 2022 IEEE.

关键词Aggregates Computer architecture Computer vision Encoding (symbols) Semantics Signal encoding 3d semantic segmentation Compound pooling Dual neighborhood construction Encodings Feature aggregation Feature enhancement Neighborhood construction Neighbourhood Point-clouds Semantic segmentation
会议名称34th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2022
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点Virtual, Online, China
会议日期October 31, 2022 - November 2, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Science and Technology Major Project from Minister of Science and Technology, China[2018AAA0103100] ; National Natural Science Foundation of China[61873255] ; Shanghai Municipal Science and Technology Major Project (ZHANGJIANG LAB)[2018SHZDZX01] ; Youth Innovation Promotion Association, Chinese Academy of Sciences[2021233] ; Shanghai Academic Research Leader[22XD1424500]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000992544400012
出版者IEEE Computer Society
EI入藏号20231914055205
EI主题词Semantic Segmentation
EI分类号406 Highway Engineering ; 412.2 Concrete Reinforcements ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/306502
专题信息科学与技术学院_特聘教授组_张晓林组
通讯作者Zhu, Dongchen
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Bion Vis Syst Lab, Shanghai 200050, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat & Technol, Shanghai 200050, Peoples R China
4.Xiongan Inst Innovat, Xiongan 071700, Peoples R China
5.Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Chen, Minghong,Zhang, Guanghui,Shi, Wenjun,et al. Dual-Neighborhood Feature Aggregation Network for Point Cloud Semantic Segmentation[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:76-81.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Minghong]的文章
[Zhang, Guanghui]的文章
[Shi, Wenjun]的文章
百度学术
百度学术中相似的文章
[Chen, Minghong]的文章
[Zhang, Guanghui]的文章
[Shi, Wenjun]的文章
必应学术
必应学术中相似的文章
[Chen, Minghong]的文章
[Zhang, Guanghui]的文章
[Shi, Wenjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。