CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features
2019-02-19
发表期刊FRONTIERS IN GENETICS (IF:2.8[JCR-2023],3.3[5-Year])
ISSN1664-8021
卷号10
发表状态已发表
DOI10.3389/fgene.2019.00121
摘要The identification of genetic alteration combinations as drivers of a given phenotypic outcome, such as drug sensitivity, gene or protein expression, and pathway activity, is a challenging task that is essential to gaining new biological insights and to discovering therapeutic targets. Existing methods designed to predict complementary drivers of such outcomes lack analytical flexibility, including the support for joint analyses of multiple genomic alteration types, such as somatic mutations and copy number alterations, multiple scoring functions, and rigorous significance and reproducibility testing procedures. To address these limitations, we developed Candidate Driver Analysis or CaDrA, an integrative framework that implements a step-wise heuristic search approach to identify functionally relevant subsets of genomic features that, together, are maximally associated with a specific outcome of interest. We show CaDrA's overall high sensitivity and specificity for typically sized multi-omic datasets using simulated data, and demonstrate CaDrA's ability to identify known mutations linked with sensitivity of cancer cells to drug treatment using data from the Cancer Cell Line Encyclopedia (CCLE). We further apply CaDrA to identify novel regulators of oncogenic activity mediated by Hippo signaling pathway effectors YAP and TAZ in primary breast cancer tumors using data from The Cancer Genome Atlas (TCGA), which we functionally validate in vitro. Finally, we use pan-cancer TCGA protein expression data to show the high reproducibility of CaDrA's search procedure. Collectively, this work demonstrates the utility of our framework for supporting the fast querying of large, publicly available multi-omics datasets, including but not limited to TCGA and CCLE, for potential drivers of a given target profile of interest.
关键词oncogenic driver analysis stepwise search TCGA CCLE R package
收录类别SCI ; SCIE
语种英语
资助项目Clinical and Translational Science Institute (Clinical and Translational Research Award CTSA) at Boston University School of Medicine[UL1-TR001430]
WOS研究方向Genetics & Heredity
WOS类目Genetics & Heredity
WOS记录号WOS:000459168100001
出版者FRONTIERS MEDIA SA
WOS关键词B-CELL LYMPHOMA ; MOLECULAR SIGNATURE ; PATHOLOGICAL ROLES ; SIGNALING PATHWAYS ; NETWORK ANALYSIS ; BREAST-CANCER ; HIPPO PATHWAY ; TUMOR-GROWTH ; EXPRESSION ; YAP/TAZ
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/30411
专题生命科学与技术学院_PI研究组_张力烨组
通讯作者Monti, Stefano
作者单位
1.Boston Univ, Bioinformat Program, Boston, MA 02215 USA
2.Boston Univ, Sch Med, Sect Computat Biomed, Boston, MA 02118 USA
3.Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
4.Boston Univ, Sch Med, Dept Biochem, Boston, MA 02118 USA
5.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Kartha, Vinay K.,Sebastiani, Paola,Kern, Joseph G.,et al. CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features[J]. FRONTIERS IN GENETICS,2019,10.
APA Kartha, Vinay K.,Sebastiani, Paola,Kern, Joseph G.,Zhang, Liye,Varelas, Xaralabos,&Monti, Stefano.(2019).CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features.FRONTIERS IN GENETICS,10.
MLA Kartha, Vinay K.,et al."CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features".FRONTIERS IN GENETICS 10(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kartha, Vinay K.]的文章
[Sebastiani, Paola]的文章
[Kern, Joseph G.]的文章
百度学术
百度学术中相似的文章
[Kartha, Vinay K.]的文章
[Sebastiani, Paola]的文章
[Kern, Joseph G.]的文章
必应学术
必应学术中相似的文章
[Kartha, Vinay K.]的文章
[Sebastiani, Paola]的文章
[Kern, Joseph G.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fgene-10-00121.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。