ShanghaiTech University Knowledge Management System
Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data | |
2023-06 | |
会议录名称 | THE 39TH IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2023)
![]() |
ISSN | 1084-4627 |
卷号 | 2023-April |
页码 | 2905-2918 |
发表状态 | 已发表 |
DOI | 10.1109/ICDE55515.2023.00222 |
摘要 | Recent work has explored federated clustering and developed an efficient k-means based method. However, it is well known that k-means clustering underperforms in high-dimensional space due to the so-called "curse of dimensionality". In addition, high-dimensional data (e.g., generated from healthcare, medical, and biological sectors) are pervasive in the big data era, which poses critical challenges to federated clustering in terms of, but not limited to, clustering effectiveness and communication efficiency. To fill this significant gap in federated clustering, we propose a one-shot federated subspace clustering scheme Fed-SC that can achieve remarkable clustering effectiveness on high-dimensional data while keeping communication cost low using only one round of communication for each local device. We further establish theoretical guarantees on the clustering effectiveness of one-shot Fed-SC and exploit the benefits of statistical heterogeneity across distributed data. Extensive experiments on synthetic and real-world datasets demonstrate significant effectiveness gains of Fed-SC compared with both subspace clustering and one-shot federated clustering methods. © 2023 IEEE. |
关键词 | Clusterings Critical challenges Curse of dimensionality Federated clustering High dimensional data High dimensional spaces K-means K-means++ clustering Statistical heterogeneities Subspace clustering |
会议名称 | 39th IEEE International Conference on Data Engineering, ICDE 2023 |
会议地点 | Anaheim, CA, United states |
会议日期 | April 3, 2023 - April 7, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233314551293 |
EI主题词 | K-means clustering |
EI分类号 | 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/303042 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_吴幼龙组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_孙露组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.HilstLab, Peter Faber Business School, Australian Catholic University, Sydney, Australia 3.Department of Computing Technologies, Swinburne University of Technology, Melbourne, Australia 4.Atlassian |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Songjie Xie,Youlong Wu,Kewen Liao,et al. Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data[C]:IEEE Computer Society,2023:2905-2918. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。