Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data
2023-06
会议录名称THE 39TH IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2023)
ISSN1084-4627
卷号2023-April
页码2905-2918
发表状态已发表
DOI10.1109/ICDE55515.2023.00222
摘要

Recent work has explored federated clustering and developed an efficient k-means based method. However, it is well known that k-means clustering underperforms in high-dimensional space due to the so-called "curse of dimensionality". In addition, high-dimensional data (e.g., generated from healthcare, medical, and biological sectors) are pervasive in the big data era, which poses critical challenges to federated clustering in terms of, but not limited to, clustering effectiveness and communication efficiency. To fill this significant gap in federated clustering, we propose a one-shot federated subspace clustering scheme Fed-SC that can achieve remarkable clustering effectiveness on high-dimensional data while keeping communication cost low using only one round of communication for each local device. We further establish theoretical guarantees on the clustering effectiveness of one-shot Fed-SC and exploit the benefits of statistical heterogeneity across distributed data. Extensive experiments on synthetic and real-world datasets demonstrate significant effectiveness gains of Fed-SC compared with both subspace clustering and one-shot federated clustering methods. © 2023 IEEE.

关键词Clusterings Critical challenges Curse of dimensionality Federated clustering High dimensional data High dimensional spaces K-means K-means++ clustering Statistical heterogeneities Subspace clustering
会议名称39th IEEE International Conference on Data Engineering, ICDE 2023
会议地点Anaheim, CA, United states
会议日期April 3, 2023 - April 7, 2023
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20233314551293
EI主题词K-means clustering
EI分类号903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/303042
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_孙露组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.HilstLab, Peter Faber Business School, Australian Catholic University, Sydney, Australia
3.Department of Computing Technologies, Swinburne University of Technology, Melbourne, Australia
4.Atlassian
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Songjie Xie,Youlong Wu,Kewen Liao,et al. Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data[C]:IEEE Computer Society,2023:2905-2918.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Songjie Xie]的文章
[Youlong Wu]的文章
[Kewen Liao]的文章
百度学术
百度学术中相似的文章
[Songjie Xie]的文章
[Youlong Wu]的文章
[Kewen Liao]的文章
必应学术
必应学术中相似的文章
[Songjie Xie]的文章
[Youlong Wu]的文章
[Kewen Liao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。