| |||||||
ShanghaiTech University Knowledge Management System
Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System | |
2023-04-26 | |
发表期刊 | APPLIED SCIENCES (IF:2.5[JCR-2023],2.7[5-Year]) |
ISSN | 2076-3417 |
卷号 | 13期号:9页码:5387 |
发表状态 | 已发表 |
DOI | 10.3390/app13095387 |
摘要 | Synchrotron radiation sources are widely used in interdisciplinary research, generating an enormous amount of data while posing serious challenges to the storage, processing, and analysis capabilities of the large-scale scientific facilities worldwide. A flexible and scalable computing architecture, suitable for complex application scenarios, combined with efficient and intelligent scheduling strategies, plays a key role in addressing these issues. In this work, we present a novel cloud–edge hybrid intelligent system (CEHIS), which was architected, developed, and deployed by the Big Data Science Center (BDSC) at the Shanghai Synchrotron Radiation Facility (SSRF) and meets the computational needs of the large-scale scientific facilities. Our methodical simulations demonstrate that the CEHIS is more efficient and performs better than the cloud-based model. Here, we have applied a deep reinforcement learning approach to the task scheduling system, finding that it effectively reduces the total time required for the task completion. Our findings prove that the cloud–edge hybrid intelligent architectures are a viable solution to address the requirements and conditions of the modern synchrotron radiation facilities, further enhancing their data processing and analysis capabilities. |
关键词 | cloud edge hybrid architecture synchrotron big data machine learning |
学科领域 | 物理学 ; 计算机科学技术 |
学科门类 | 理学 ; 工学 |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/297967 |
专题 | 物质科学与技术学院_硕士生 物质科学与技术学院_特聘教授组_邰仁忠组 |
通讯作者 | Wang CP(王春鹏); Alessandro Sepe; Tai RZ(邰仁忠) |
作者单位 | 1.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China 2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China 3.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Ye J,Wang CP,Chen JG,et al. Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System[J]. APPLIED SCIENCES,2023,13(9):5387. |
APA | Ye J.,Wang CP.,Chen JG.,Wan RZ.,Li XY.,...&Tai RZ.(2023).Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System.APPLIED SCIENCES,13(9),5387. |
MLA | Ye J,et al."Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System".APPLIED SCIENCES 13.9(2023):5387. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。