消息
×
loading..
Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System
2023-04-26
发表期刊APPLIED SCIENCES (IF:2.5[JCR-2023],2.7[5-Year])
ISSN2076-3417
卷号13期号:9页码:5387
发表状态已发表
DOI10.3390/app13095387
摘要

Synchrotron radiation sources are widely used in interdisciplinary research, generating an enormous amount of data while posing serious challenges to the storage, processing, and analysis capabilities of the large-scale scientific facilities worldwide. A flexible and scalable computing architecture, suitable for complex application scenarios, combined with efficient and intelligent scheduling strategies, plays a key role in addressing these issues. In this work, we present a novel cloud–edge hybrid intelligent system (CEHIS), which was architected, developed, and deployed by the Big Data Science Center (BDSC) at the Shanghai Synchrotron Radiation Facility (SSRF) and meets the computational needs of the large-scale scientific facilities. Our methodical simulations demonstrate that the CEHIS is more efficient and performs better than the cloud-based model. Here, we have applied a deep reinforcement learning approach to the task scheduling system, finding that it effectively reduces the total time required for the task completion. Our findings prove that the cloud–edge hybrid intelligent architectures are a viable solution to address the requirements and conditions of the modern synchrotron radiation facilities, further enhancing their data processing and analysis capabilities.

关键词cloud edge hybrid architecture synchrotron big data machine learning
学科领域物理学 ; 计算机科学技术
学科门类理学 ; 工学
URL查看原文
收录类别SCI
语种英语
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/297967
专题物质科学与技术学院_硕士生
物质科学与技术学院_特聘教授组_邰仁忠组
通讯作者Wang CP(王春鹏); Alessandro Sepe; Tai RZ(邰仁忠)
作者单位
1.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
3.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Ye J,Wang CP,Chen JG,et al. Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System[J]. APPLIED SCIENCES,2023,13(9):5387.
APA Ye J.,Wang CP.,Chen JG.,Wan RZ.,Li XY.,...&Tai RZ.(2023).Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System.APPLIED SCIENCES,13(9),5387.
MLA Ye J,et al."Cloud-Edge Hybrid Computing Architecture for Large-Scale Scientific Facilities Augmented with an Intelligent Scheduling System".APPLIED SCIENCES 13.9(2023):5387.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ye J(叶静)]的文章
[Wang CP(王春鹏)]的文章
[Chen JG(陈济舸)]的文章
百度学术
百度学术中相似的文章
[Ye J(叶静)]的文章
[Wang CP(王春鹏)]的文章
[Chen JG(陈济舸)]的文章
必应学术
必应学术中相似的文章
[Ye J(叶静)]的文章
[Wang CP(王春鹏)]的文章
[Chen JG(陈济舸)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。