ShanghaiTech University Knowledge Management System
Variable Stiffness Object Recognition with Bayesian Convolutional Neural Network on a Soft Gripper | |
2022 | |
会议录名称 | INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
![]() |
ISSN | 2153-0858 |
发表状态 | 已发表 |
DOI | https://doi.org/10.1109/IROS47612.2022.9982051 |
摘要 | From a medical standpoint, detecting the size and shape of hard inclusions hidden in soft three-dimensional objects is of great significance for early detection of cancer through palpation. Soft robots, especially soft grippers, substantially broaden robots' palpation capabilities from soft to hard materials without the assistance of a camera. We have recently introduced a CNN-Bayes approach which added a Naïve Bayes classifier to a convolutional neural network (CNN) architecture called SoftTactNet for variable stiffness object recognition on a three-finger FinRay soft gripper. SoftTactNet itself lacks uncertainty estimations though it can reach a certain level of recognition accuracy. In this paper, we further improve the framework by merging Bayes method directly into CNN architectures and build a new Bayes-SoftTactNet for object recognition. The new approach, using a prior distribution instead of point estimation, allows the network to present results with uncertainty estimates. We conduct new experiments using the same soft gripper with tactile sensor arrays to grasp different variable stiffness objects surrounded by non-different soft material and generate tactile images as dataset. The results show that our new algorithm is more efficient than the previous approach and still able to achieve higher recognition accuracy than general deterministic CNNs. |
会议地点 | Kyoto, Japan |
会议日期 | 23-27 Oct. 2022 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/296770 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_ANDRE LUIS MACEDO ROSENDO SILVA组 |
通讯作者 | Cao Jinyue |
作者单位 | 上海科技大学 |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cao Jinyue,Huang Jingyi,Andre Rosendo. Variable Stiffness Object Recognition with Bayesian Convolutional Neural Network on a Soft Gripper[C],2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。