| |||||||
ShanghaiTech University Knowledge Management System
Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production | |
2023-04-10 | |
发表期刊 | NATURE COMMUNICATIONS (IF:14.7[JCR-2023],16.1[5-Year]) |
EISSN | 2041-1723 |
卷号 | 14期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41467-023-37618-2 |
摘要 | ["Detailed mechanistic study is challenging but meanwhile benefits rational design of electrocatalysts. Here the authors report bimetallic phosphide for bifunctional hydrazine oxidation and hydrogen evolution reaction and reveal hydrazine oxidation pathways as well as the recovery of metal phosphide active site by N2H4 molecules.","Substituting hydrazine oxidation reaction for oxygen evolution reaction can result in greatly reduced energy consumption for hydrogen production, however, the mechanism and the electrochemical utilization rate of hydrazine oxidation reaction remain ambiguous. Herein, a bimetallic and hetero-structured phosphide catalyst has been fabricated to catalyze both hydrazine oxidation and hydrogen evolution reactions, and a new reaction path of nitrogen-nitrogen single bond breakage has been proposed and confirmed in hydrazine oxidation reaction. The high electro-catalytic performance is attributed to the instantaneous recovery of metal phosphide active site by hydrazine and the lowered energy barrier, which enable the constructed electrolyzer using bimetallic phosphide catalyst at both sides to reach 500 mA cm(-2) for hydrogen production at 0.498 V, and offer an enhanced hydrazine electrochemical utilization rate of 93%. Such an electrolyzer can be powered by a bimetallic phosphide anode-equipped direct hydrazine fuel cell, achieving self-powered hydrogen production at a rate of 19.6 mol h(-1) m(-2)."] |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[52172110] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[ZDBS-LY-SLH029] ; "Scientific and Technical Innovation Action Plan" Hong Kong, Macao and Taiwan Science & Technology Cooperation Project of Shanghai Science and Technology Committee[21520760500] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000966329100003 |
出版者 | NATURE PORTFOLIO |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/296031 |
专题 | 物质科学与技术学院 物质科学与技术学院_博士生 |
通讯作者 | Cui, Xiangzhi; Shi, Jianlin |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China 2.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China 3.Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China 4.Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 5.Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Chem & Mat Sci, Hangzhou 310024, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Libo,Huang, Jian,Meng, Ge,et al. Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production[J]. NATURE COMMUNICATIONS,2023,14(1). |
APA | Zhu, Libo.,Huang, Jian.,Meng, Ge.,Wu, Tiantian.,Chen, Chang.,...&Shi, Jianlin.(2023).Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production.NATURE COMMUNICATIONS,14(1). |
MLA | Zhu, Libo,et al."Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production".NATURE COMMUNICATIONS 14.1(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhu, Libo]的文章 |
[Huang, Jian]的文章 |
[Meng, Ge]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhu, Libo]的文章 |
[Huang, Jian]的文章 |
[Meng, Ge]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhu, Libo]的文章 |
[Huang, Jian]的文章 |
[Meng, Ge]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。