MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning
2023-04-01
发表期刊SENSORS
ISSN1424-8220
EISSN1424-8220
卷号23期号:7
发表状态已发表
DOI10.3390/s23073609
摘要Few-shot object detection (FSOD) is proposed to solve the application problem of traditional detectors in scenarios lacking training samples. The meta-learning methods have attracted the researchers' attention for their excellent generalization performance. They usually select the same class of support features according to the query labels to weight the query features. However, the model cannot possess the ability of active identification only by using the same category support features, and feature selection causes difficulties in the testing process without labels. The single-scale feature of the model also leads to poor performance in small object detection. In addition, the hard samples in the support branch impact the backbone's representation of the support features, thus impacting the feature weighting process. To overcome these problems, we propose a multi-scale feature fusion and attentive learning (MSFFAL) framework for few-shot object detection. We first design the backbone with multi-scale feature fusion and channel attention mechanism to improve the model's detection accuracy on small objects and the representation of hard support samples. Based on this, we propose an attention loss to replace the feature weighting module. The loss allows the model to consistently represent the objects of the same category in the two branches and realizes the active recognition of the model. The model no longer depends on query labels to select features when testing, optimizing the model testing process. The experiments show that MSFFAL outperforms the state-of-the-art (SOTA) by 0.7-7.8% on the Pascal VOC and exhibits 1.61 times the result of the baseline model in MS COCO's small objects detection.
关键词few-shot object detection few-shot learning attention mechanism multi-scale feature fusion
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China[51827814] ; Youth Innovation Promotion Association CAS[2021289]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000969003700001
出版者MDPI
EI入藏号20231613943441
EI主题词Object detection
EI分类号723.2 Data Processing and Image Processing ; 912.4 Personnel
原始文献类型Journal article (JA)
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/296030
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Zhang, Fuping
作者单位
1.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
4.Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Tianzhao,Sun, Ruoxi,Wan, Yong,et al. MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning[J]. SENSORS,2023,23(7).
APA Zhang, Tianzhao,Sun, Ruoxi,Wan, Yong,Zhang, Fuping,&Wei, Jianming.(2023).MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning.SENSORS,23(7).
MLA Zhang, Tianzhao,et al."MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning".SENSORS 23.7(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Tianzhao]的文章
[Sun, Ruoxi]的文章
[Wan, Yong]的文章
百度学术
百度学术中相似的文章
[Zhang, Tianzhao]的文章
[Sun, Ruoxi]的文章
[Wan, Yong]的文章
必应学术
必应学术中相似的文章
[Zhang, Tianzhao]的文章
[Sun, Ruoxi]的文章
[Wan, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@s23073609.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。