Pathology study for blood vessel of ocular fundus images by photoacoustic tomography
2018-10
会议录名称2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)
ISSN1948-5719
卷号2018-January
页码1-4
发表状态已发表
DOI10.1109/ULTSYM.2018.8579931
摘要In the entire diabetic population, the total number of patients with diabetic retinopathy is more than 50%, and the longer diabetes, the higher the incidence of retinopathy and the rate of blindness. Besides, the blood vessel of ocular fundus is the only blood vessel that can be directly observed, which has excellent application value in medical diagnostics. Photoacoustic Tomography (PAT) is an emerging technique that can obtain high-resolution 3D in-vivo images of optical absorption by sensing laser-generated ultrasound. Therefore, in this paper, we applied U-net neural network for the segmentation of blood vessel of ocular fundus images that opens up new methods for fundus medical image processing. Then we use 2D Time Reversal photoacoustic simulation based on k-WAVE MATLAB toolbox to convert the fundus segmentation of blood vessel images into photoacoustic images. Finally, we use the ResNet Network for the diagnosis of diabetes, in which the input data are the healthy and patient photoacoustic images of the fundus segmentation of blood vessel. We achieved 85% accuracy with 158 training samples. These results demonstrate the power of using deep learning for the analysis of diabetes through the fundus segmentation photoacoustic images of the blood vessel.
关键词Economic indicators
会议地点Kobe
会议日期22-25 Oct. 2018
URL查看原文
收录类别EI ; CPCI ; CPCI-S
出版者IEEE Computer Society
EI入藏号20191006591611
EI主题词Deep learning ; Diagnosis ; Eye protection ; Image segmentation ; Light absorption ; MATLAB ; Medical imaging ; Optical data processing ; Photoacoustic effect ; Tomography ; Ultrasonic applications
EI分类号Biological Materials and Tissue Engineering:461.2 ; Medicine and Pharmacology:461.6 ; Data Processing and Image Processing:723.2 ; Light/Optics:741.1 ; Imaging Techniques:746 ; Ultrasonic Applications:753.3 ; Accidents and Accident Prevention:914.1 ; Mathematics:921
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29603
专题信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, The Hybrid Imaging System Laboratory, Shanghai, China
2.Beijing University of Posts and Telecommunications, The Pattern Recognition and Intelligent System Laboratory, Beijing, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiayao Zhang,Kai Deng,Bin Chen,et al. Pathology study for blood vessel of ocular fundus images by photoacoustic tomography[C]:IEEE Computer Society,2018:1-4.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiayao Zhang]的文章
[Kai Deng]的文章
[Bin Chen]的文章
百度学术
百度学术中相似的文章
[Jiayao Zhang]的文章
[Kai Deng]的文章
[Bin Chen]的文章
必应学术
必应学术中相似的文章
[Jiayao Zhang]的文章
[Kai Deng]的文章
[Bin Chen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 08579931.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。