ShanghaiTech University Knowledge Management System
Unsupervised neural dependency parsing | |
2016 | |
会议录名称 | 2016 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2016
![]() |
页码 | 763-771 |
发表状态 | 已发表 |
摘要 | Unsupervised dependency parsing aims to learn a dependency grammar from text annotated with only POS tags. Various features and inductive biases are often used to incorporate prior knowledge into learning. One useful type of prior information is that there exist correlations between the parameters of grammar rules involving different POS tags. Previous work employed manually designed features or special prior distributions to encode such information. In this paper, we propose a novel approach to unsupervised dependency parsing that uses a neural model to predict grammar rule probabilities based on distributed representation of POS tags. The distributed representation is automatically learned from data and captures the correlations between POS tags. Our experiments show that our approach outperforms previous approaches utilizing POS correlations and is competitive with recent state-of-the-art approaches on nine different languages. |
会议地点 | Austin, TX, United states |
收录类别 | EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61503248] |
出版者 | Association for Computational Linguistics (ACL) |
EI入藏号 | 20194107499800 |
EI主题词 | Natural language processing systems |
EI分类号 | Computer Programming Languages:723.1.1 ; Data Processing and Image Processing:723.2 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29539 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_屠可伟组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiang, Yong,Han, Wenjuan,Tu, Kewei. Unsupervised neural dependency parsing[C]:Association for Computational Linguistics (ACL),2016:763-771. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。