消息
×
loading..
Joint Bandwidth Allocation, Computation Control, and Device Scheduling for Federated Learning with Energy Harvesting Devices
2022
会议录名称CONFERENCE RECORD - ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS
ISSN1058-6393
卷号2022-October
页码1164-1168
发表状态已发表
DOI10.1109/IEEECONF56349.2022.10051949
摘要

Federated learning (FL) is a promising technique for distilling artificial intelligence from massive data distributed in Internet-of-Things (IoT) networks while keeping their privacy. However, the efficient deployment of FL faces several challenges due to e.g., limited radio resources, computation capability, and battery capacity of IoT devices. To address these challenges, in this work, the energy harvesting technique is first enabled on IoT devices for supporting their long-term training. Then, the convergence rate of the FL algorithm is derived, which indicates that for reducing the learning latency, the data utility, i.e., the number of training samples, should be maximized in each training iteration. To this end, a data utility maximization problem for each iteration is formulated, under the constraints of limited time, bandwidth, computation frequency, and energy supply. The problem is mixed-integer and non-convex, and hence NP-hard. A joint bandwidth allocation, computation control, and device selection scheme is proposed. In the scheme, an energy-efficient training data contribution indicator is first derived for each device, and then a sequential device scheduling scheme is designed. © 2022 IEEE.

关键词Bandwidth Energy efficiency Internet of things Iterative methods Computation control Data distributed Data utilities Device scheduling Device selection Energy harvesting device Federated learning Massive data Radio resources Resources allocation
会议名称56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
会议地点Virtual, Online, United states
会议日期October 31, 2022 - November 2, 2022
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20231213749527
EI主题词Energy harvesting
EI分类号525.2 Energy Conservation - 525.5 Energy Conversion Issues - 716.1 Information Theory and Signal Processing - 722.3 Data Communication, Equipment and Techniques - 723 Computer Software, Data Handling and Applications - 921.6 Numerical Methods
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/294851
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_文鼎柱组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shenzhen Research Institute of Big Data, Shenzhen, China
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
4.School of Electronic Information, Wuhan University, Wuhan, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li Zeng,Dingzhu Wen,Guangxu Zhu,et al. Joint Bandwidth Allocation, Computation Control, and Device Scheduling for Federated Learning with Energy Harvesting Devices[C]:IEEE Computer Society,2022:1164-1168.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
百度学术
百度学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
必应学术
必应学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。