消息
×
loading..
End-to-End Compound Table Understanding with Multi-Modal Modeling
2022-10-10
会议录名称MM 2022 - PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码4112-4121
发表状态已发表
DOI10.1145/3503161.3547885
摘要

Table is a widely used data form in webpages, spreadsheets, or PDFs to organize and present structural data. Although studies on table structure recognition have been successfully used to convert image-based tables into digital structural formats, solving many real problems still relies on further understanding of the table, such as cell relationship extraction. The current datasets related to table understanding are all based on the digit format. To boost research development, we release a new benchmark named ComFinTab with rich annotations that support both table recognition and understanding tasks. Unlike previous datasets containing the basic tables, ComFinTab contains a large ratio of compound tables, which is much more challenging and requires methods using multiple information sources. Based on the dataset, we also propose a uniform, concise task form with the evaluation metric to better evaluate the model's performance on the table understanding task in compound tables. Finally, a framework named CTUNet is proposed to integrate the compromised visual, semantic, and position features with a graph attention network, which can solve the table recognition task and the challenging table understanding task as a whole. Experimental results compared with some previous advanced table understanding methods demonstrate the effectiveness of our proposed model. Code and dataset are available at https://github.com/hikopensource/DAVAR-Lab-OCR. © 2022 ACM.

会议录编者/会议主办者ACM SIGMM
关键词HTTP Large dataset Dataset End to end Modal models Multi-modal Multi-modal learning Structural data Structure recognition Table structure Table understanding Web-page
会议名称30th ACM International Conference on Multimedia, MM 2022
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点Lisboa, Portugal
会议日期October 10, 2022 - October 14, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Interdisciplinary Applications
WOS记录号WOS:001150372704018
出版者Association for Computing Machinery, Inc
EI入藏号20231413828665
EI主题词Semantics
EI分类号723.2 Data Processing and Image Processing
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/294849
专题信息科学与技术学院_硕士生
通讯作者Liang, Qiao; Li, Xi
作者单位
1.Hikvision Research Institute, Hangzhou, China;
2.ShanghaiTech University, Shanghai, China;
3.Zhejiang University, Hangzhou, China
推荐引用方式
GB/T 7714
Li, Zaisheng,Li, Yi,Liang, Qiao,et al. End-to-End Compound Table Understanding with Multi-Modal Modeling[C]//ACM SIGMM. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2022:4112-4121.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zaisheng]的文章
[Li, Yi]的文章
[Liang, Qiao]的文章
百度学术
百度学术中相似的文章
[Li, Zaisheng]的文章
[Li, Yi]的文章
[Liang, Qiao]的文章
必应学术
必应学术中相似的文章
[Li, Zaisheng]的文章
[Li, Yi]的文章
[Liang, Qiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。