| |||||||
ShanghaiTech University Knowledge Management System
End-to-End Compound Table Understanding with Multi-Modal Modeling | |
2022-10-10 | |
会议录名称 | MM 2022 - PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA |
页码 | 4112-4121 |
发表状态 | 已发表 |
DOI | 10.1145/3503161.3547885 |
摘要 | Table is a widely used data form in webpages, spreadsheets, or PDFs to organize and present structural data. Although studies on table structure recognition have been successfully used to convert image-based tables into digital structural formats, solving many real problems still relies on further understanding of the table, such as cell relationship extraction. The current datasets related to table understanding are all based on the digit format. To boost research development, we release a new benchmark named ComFinTab with rich annotations that support both table recognition and understanding tasks. Unlike previous datasets containing the basic tables, ComFinTab contains a large ratio of compound tables, which is much more challenging and requires methods using multiple information sources. Based on the dataset, we also propose a uniform, concise task form with the evaluation metric to better evaluate the model's performance on the table understanding task in compound tables. Finally, a framework named CTUNet is proposed to integrate the compromised visual, semantic, and position features with a graph attention network, which can solve the table recognition task and the challenging table understanding task as a whole. Experimental results compared with some previous advanced table understanding methods demonstrate the effectiveness of our proposed model. Code and dataset are available at https://github.com/hikopensource/DAVAR-Lab-OCR. © 2022 ACM. |
会议录编者/会议主办者 | ACM SIGMM |
关键词 | HTTP Large dataset Dataset End to end Modal models Multi-modal Multi-modal learning Structural data Structure recognition Table structure Table understanding Web-page |
会议名称 | 30th ACM International Conference on Multimedia, MM 2022 |
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES |
会议地点 | Lisboa, Portugal |
会议日期 | October 10, 2022 - October 14, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:001150372704018 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20231413828665 |
EI主题词 | Semantics |
EI分类号 | 723.2 Data Processing and Image Processing |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/294849 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Liang, Qiao; Li, Xi |
作者单位 | 1.Hikvision Research Institute, Hangzhou, China; 2.ShanghaiTech University, Shanghai, China; 3.Zhejiang University, Hangzhou, China |
推荐引用方式 GB/T 7714 | Li, Zaisheng,Li, Yi,Liang, Qiao,et al. End-to-End Compound Table Understanding with Multi-Modal Modeling[C]//ACM SIGMM. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2022:4112-4121. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Zaisheng]的文章 |
[Li, Yi]的文章 |
[Liang, Qiao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Zaisheng]的文章 |
[Li, Yi]的文章 |
[Liang, Qiao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Zaisheng]的文章 |
[Li, Yi]的文章 |
[Liang, Qiao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。