Can language understand depth?
2022-10-10
会议录名称MM 2022 - PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码6868-6874
DOI10.1145/3503161.3549201
摘要Besides image classification, Contrastive Language-Image Pre-Training (CLIP) has accomplished extraordinary success for a wide range of vision tasks, including object-level and 3D space understanding. However, it's still challenging to transfer semantic knowledge learned from CLIP into more intricate tasks of quantified targets, such as depth estimation with geometric information. In this paper, we propose to apply CLIP for zero-shot monocular depth estimation, named DepthCLIP. We found that the patches of input image could respond to a certain semantic distance token and then be projected to a quantified depth bin for coarse estimation. Without any training, our DepthCLIP surpasses existing unsupervised methods and even approaches the early fully-supervised networks. To our best knowledge, we are the first to conduct zero-shot adaptation from the semantic language knowledge to quantified downstream tasks and perform zero-shot monocular depth estimation. We hope our work could cast a light on the future research. The code is available at https://github.com/Adonis-galaxy/DepthCLIP. © 2022 ACM.
会议录编者/会议主办者ACM SIGMM
关键词Transfer learning Zero-shot learning 3D spaces Contrastive language-image pre-training Depth Estimation Geometric information Images classification Monocular depth estimation Pre-training Semantics knowledge Transfer learning Zero-shot transfer learning
会议名称30th ACM International Conference on Multimedia, MM 2022
会议地点Lisboa, Portugal
会议日期October 10, 2022 - October 14, 2022
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20231313810636
EI主题词Semantics
EI分类号723.4 Artificial Intelligence
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/294847
专题信息科学与技术学院_本科生
作者单位
1.Peking University, Beijing, China;
2.ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Zhang, Renrui,Zeng, Ziyao,Guo, Ziyu,et al. Can language understand depth?[C]//ACM SIGMM:Association for Computing Machinery, Inc,2022:6868-6874.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Renrui]的文章
[Zeng, Ziyao]的文章
[Guo, Ziyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Renrui]的文章
[Zeng, Ziyao]的文章
[Guo, Ziyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Renrui]的文章
[Zeng, Ziyao]的文章
[Guo, Ziyu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3503161.3549201.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。