消息
×
loading..
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels
2023-04
会议录名称THE 32ND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-23)
ISSN1045-0823
卷号2023-August
页码828-836
发表状态正式接收
摘要

Despite deep learning has achieved great success, it often relies on a large amount of training data with accurate labels, which are expensive and time-consuming to collect. A prominent direction to reduce the cost is to learn with noisy labels, which are ubiquitous in the real-world applications. A critical challenge for such a learning task is to reduce the effect of network memorization on the falsely-labeled data. In this work, we propose an iterative selection approach based on the Weibull mixture model, which identifies clean data by considering the overall learning dynamics of each data instance. In contrast to the previous small-loss heuristics, we leverage the observation that deep network is easy to memorize and hard to forget clean data. In particular, we measure the difficulty of memorization and forgetting for each instance via the transition times between being misclassified and being memorized in training, and integrate them into a novel metric for selection. Based on the proposed metric, we retain a subset of identified clean data and repeat the selection procedure to iteratively refine the clean subset, which is finally used for model training. To validate our method, we perform extensive experiments on synthetic noisy datasets and real-world web data, and our strategy outperforms existing noisy-label learning methods. © 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.

会议录编者/会议主办者International Joint Conferences on Artifical Intelligence (IJCAI)
关键词Deep learning Learning systems Critical challenges Labeled data Large amounts Learn+ Learning tasks Mixture modeling Noisy labels Real-world Training data Weibull mixture
会议名称32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
会议地点Macao, China
会议日期August 19, 2023 - August 25, 2023
收录类别EI
语种英语
出版者International Joint Conferences on Artificial Intelligence
EI入藏号20233714713477
EI主题词Iterative methods
EI分类号461.4 Ergonomics and Human Factors Engineering ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/292213
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_博士生
通讯作者Xuming He
作者单位
上海科技大学
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chuanyang Hu,Shipeng Yan,Zhitong Gao,et al. MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels[C]//International Joint Conferences on Artifical Intelligence (IJCAI):International Joint Conferences on Artificial Intelligence,2023:828-836.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chuanyang Hu]的文章
[Shipeng Yan]的文章
[Zhitong Gao]的文章
百度学术
百度学术中相似的文章
[Chuanyang Hu]的文章
[Shipeng Yan]的文章
[Zhitong Gao]的文章
必应学术
必应学术中相似的文章
[Chuanyang Hu]的文章
[Shipeng Yan]的文章
[Zhitong Gao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: paper.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。