ShanghaiTech University Knowledge Management System
Joint Activity Detection and Channel Estimation for IoT Networks: Phase Transition and Computation-Estimation Tradeoff | |
2019-08 | |
发表期刊 | IEEE INTERNET OF THINGS JOURNAL
![]() |
ISSN | 2327-4662 |
卷号 | 6期号:4页码:6212-6225 |
发表状态 | 已发表 |
DOI | 10.1109/JIOT.2018.2881486 |
摘要 | Massive device connectivity is a crucial communication challenge for Internet of Things (IoT) networks, which consist of a large number of devices with sporadic traffic. In each coherence block, the serving base station needs to identify the active devices and estimate their channel state information for effective communication. By exploiting the sparsity pattern of data transmission, we develop a structured group sparsity estimation method to simultaneously detect the active devices and estimate the corresponding channels. This method significantly reduces the signature sequence length while supporting massive IoT access. To determine the optimal signature sequence length, we study the phase transition behavior of the group sparsity estimation problem. Specifically, user activity can be successfully estimated with a high probability when the signature sequence length exceeds a threshold; otherwise, it fails with a high probability. The location and width of the phase transition region are characterized via the theory of conic integral geometry. We further develop a smoothing method to solve the high-dimensional structured estimation problem with a given limited time budget. This is achieved by sharply characterizing the convergence rate in terms of the smoothing parameter, signature sequence length and estimation accuracy, yielding a tradeoff between the estimation accuracy and computational cost. Numerical results are provided to illustrate the accuracy of our theoretical results and the benefits of smoothing techniques. |
关键词 | Computation-estimation tradeoffs conic integral geometry group sparsity estimation massive Internet of Things (IoT) connectivity phase transitions statistical dimension |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | Hong Kong Research Grant Council[16211815] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000478957600036 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | MASSIVE CONNECTIVITY ; CONVEX-OPTIMIZATION ; SPARSE ; ACCESS ; INTERNET ; RECONSTRUCTION ; CHALLENGES ; GRADIENT ; GEOMETRY ; PROGRAMS |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29210 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Tao Jiang,Yuanming Shi,Jun Zhang,et al. Joint Activity Detection and Channel Estimation for IoT Networks: Phase Transition and Computation-Estimation Tradeoff[J]. IEEE INTERNET OF THINGS JOURNAL,2019,6(4):6212-6225. |
APA | Tao Jiang,Yuanming Shi,Jun Zhang,&Khaled B. Letaief.(2019).Joint Activity Detection and Channel Estimation for IoT Networks: Phase Transition and Computation-Estimation Tradeoff.IEEE INTERNET OF THINGS JOURNAL,6(4),6212-6225. |
MLA | Tao Jiang,et al."Joint Activity Detection and Channel Estimation for IoT Networks: Phase Transition and Computation-Estimation Tradeoff".IEEE INTERNET OF THINGS JOURNAL 6.4(2019):6212-6225. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。