Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation
2018-11
发表期刊光谱学与光谱分析 (IF:0.7[JCR-2023],0.6[5-Year])
ISSN1000-0593
卷号38期号:11页码:3507-3515
发表状态已发表
DOI10.3964/j.issn.1000-0593(2018)11-3507-09
摘要With the widespread use of hyperspectral images, hyperspectral image technology has made considerable progress, of which hyperspectral image anomaly detection technology has received more and more attention. In order to solve the problem of poor practicability and poor detection effect of traditional hyperspectral image anomaly detection techniques, this paper presents a novel low rank representation detection algorithm. For hyperspectral images, most of the background pixels can be approximated by a small number of major background pixel combinations, and their representation coefficients will be located in a low-rank space. While the remaining anomalous pixels in the sparse part that can not be represented by the main background pixels can be extracted by the detection algorithm. In low-rank representations, the construction of the background pixel dictionary will affect the representation of the background pixels in the hyperspectral image. When extracting the background pixels directly from the existing hyperspectral image to construct the dictionary, this process will lead to the contamination of the background pixel dictionary by the abnormal pixels. So in this paper, the background pixel dictionary is constructed by using the observed data on the hyperspectral image to be detected and the potential unobserved data that can be synthesized by the principle of spectral composition, and the main features of the background pixels are extracted, helping to better separate the sparse anomalous pixel Information. Hyperspectral image data is characterized by high-dimensional geometry. In this paper, we introduce a Laplacian matrix to constrain the representation of locally similar pixels in the space to be detected, and get a closer representation of the true representation coefficients. The experimental results are validated respectively on the simulation data and the real data, showing that the proposed method reduces the false detection rate by effectively highlighting the abnormal pixels and improves the detection rate by suppressing the background pixels.
关键词Hyperspectral image Laplasse Low rank representation Anomaly detection
收录类别SCI ; SCIE ; 北大核心 ; EI
语种中文
WOS研究方向Spectroscopy
WOS类目Spectroscopy
WOS记录号WOS:000452247200030
出版者OFFICE SPECTROSCOPY & SPECTRAL ANALYSIS
EI入藏号20190806521497
EI主题词Anomaly detection ; Hyperspectral imaging ; Matrix algebra ; Signal detection ; Spectroscopy
EI分类号Information Theory and Signal Processing:716.1 ; Algebra:921.1
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29180
专题信息科学与技术学院_硕士生
信息科学与技术学院_特聘教授组_王建宇组
通讯作者Wang Jian-yu
作者单位
1.Chinese Acad Sci, Key Lab Space Act Optoelect Technol, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Shanghai 200120, Peoples R China
第一作者单位上海科技大学
推荐引用方式
GB/T 7714
Wang Jie-chao,Sun Da-peng,Zhang Chang-zing,et al. Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation[J]. 光谱学与光谱分析,2018,38(11):3507-3515.
APA Wang Jie-chao,Sun Da-peng,Zhang Chang-zing,Xie Feng,&Wang Jian-yu.(2018).Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation.光谱学与光谱分析,38(11),3507-3515.
MLA Wang Jie-chao,et al."Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation".光谱学与光谱分析 38.11(2018):3507-3515.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang Jie-chao]的文章
[Sun Da-peng]的文章
[Zhang Chang-zing]的文章
百度学术
百度学术中相似的文章
[Wang Jie-chao]的文章
[Sun Da-peng]的文章
[Zhang Chang-zing]的文章
必应学术
必应学术中相似的文章
[Wang Jie-chao]的文章
[Sun Da-peng]的文章
[Zhang Chang-zing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。