Believe It or Not, We Know What You Are Looking At!
2019
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号11363
页码35-50
发表状态已发表
DOI10.1007/978-3-030-20893-6_3
摘要By borrowing the wisdom of human in gaze following, we propose a two-stage solution for gaze point prediction of the target persons in a scene. Specifically, in the first stage, both head image and its position are fed into a gaze direction pathway to predict the gaze direction, and then multi-scale gaze direction fields are generated to characterize the distribution of gaze points without considering the scene contents. In the second stage, the multi-scale gaze direction fields are concatenated with the image contents and fed into a heatmap pathway for heatmap regression. There are two merits for our two-stage solution based gaze following: (i) our solution mimics the behavior of human in gaze following, therefore it is more psychological plausible; (ii) besides using heatmap to supervise the output of our network, we can also leverage gaze direction to facilitate the training of gaze direction pathway, therefore our network can be more robustly trained. Considering that existing gaze following dataset is annotated by the third-view persons, we build a video gaze following dataset, where the ground truth is annotated by the observers in the videos. Therefore it is more reliable. The evaluation with such a dataset reflects the capacity of different methods in real scenarios better. Extensive experiments on both datasets show that our method significantly outperforms existing methods, which validates the effectiveness of our solution for gaze following.
关键词Gaze following Saliency Multi-scale gaze direction fields
会议名称Asian Conference on Computer Vision
收录类别EI ; CPCI-S ; CPCI
语种英语
资助项目NSFC[61502304]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000492903100003
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EI入藏号20192507061254
EI主题词Behavioral research
EISSN1611-3349
EI分类号Computer Applications:723.5 ; Social Sciences:971
WOS关键词MODEL
原始文献类型Proceedings Paper
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29130
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
通讯作者Gao, Shenghua
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lian, Dongze,Yu, Zehao,Gao, Shenghua. Believe It or Not, We Know What You Are Looking At![C]:SPRINGER INTERNATIONAL PUBLISHING AG,2019:35-50.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lian, Dongze]的文章
[Yu, Zehao]的文章
[Gao, Shenghua]的文章
百度学术
百度学术中相似的文章
[Lian, Dongze]的文章
[Yu, Zehao]的文章
[Gao, Shenghua]的文章
必应学术
必应学术中相似的文章
[Lian, Dongze]的文章
[Yu, Zehao]的文章
[Gao, Shenghua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@978-3-030-20893-6_3.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。