消息
×
loading..
3D object structure recovery via semi-supervised learning on videos
2019
会议录名称29TH BRITISH MACHINE VISION CONFERENCE, BMVC 2018
发表状态已发表
摘要This paper addresses the problem of joint 3D object structure and camera pose estimation from a single RGB image. Existing approaches typically rely on both images with 2D keypoint annotations and 3D synthetic data to learn a deep network model due to difficulty in obtaining 3D annotations. However, the domain gap between the synthetic and image data usually leads to a 3D object interpretation model sensitive to the viewing angle, occlusion and background clutter in real images. In this work, we propose a semi-supervised learning strategy to build a robust 3D object interpreter, which exploits rich object videos for better generalization under large pose variations and noisy 2D keypoint estimation. The core design of our learning algorithm is a new loss function that enforces the temporal consistency constraint in the 3D predictions on videos. The experiment evaluation on the IKEA, PASCAL3D+ and our object video dataset shows that our approach achieves the state-of-the-art performance in structure and pose estimation.
© 2018. The copyright of this document resides with its authors.
会议地点Newcastle, United kingdom
收录类别EI
出版者BMVA Press
EI入藏号20193807460284
EI主题词Computer vision ; Learning algorithms ; Supervised learning
EI分类号Computer Applications:723.5
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29128
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
He, Qian,Zhou, Desen,He, Xuming. 3D object structure recovery via semi-supervised learning on videos[C]:BMVA Press,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[He, Qian]的文章
[Zhou, Desen]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[He, Qian]的文章
[Zhou, Desen]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[He, Qian]的文章
[Zhou, Desen]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 0516.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。