Photoacoustic classification of tumor malignancy based on support vector machine
2018
会议录名称OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII
卷号10820
发表状态已发表
DOI10.1117/12.2500750
摘要Accurate diagnosis of malignancy tumor in early stage is great significance to achieve high curability, which could improve survival rate in this stage. Precise classification to differentiate malignancy of tumors is favourable to reduce cost in treatment when there is no obvious features in radiology diagnose in early phase. Photoacoustic tomography (PAT) is a burgeoning new imaging modality, which combines optical contrast and ultrasound penetrating in deep medium. However, it has not been fully exploited on the capability of PAT to discriminate tumor's malignancy. In this paper, a multistatic classification approach in PAT is proposed, which could discriminate malignant/benign tumors based on its morphological feature in clinical diagnosis that tumors usually show different shape irregularity compared with healthy tissue. The multistatic photoacoustic waves were used to extract two different features to differentiate the two types of tumors with high accuracy (>90%) in three different scenarios using Support Vector Machines (SVM). In addition, two conventional PAT image reconstructing algorithms are also performed to reconstruct images as a comparative study, which unfortunately cannot differentiate their malignancy precisely because of limited detector bandwidth and severe acoustic distortion. We performed the feasibility study in this paper with both simulation and experimental results, which shows that the proposed multistatic photoacoustic classification method to distinguish between malignant and benign tumors works well, and could be easily applied for state-of-art array-based PAT system to ameliorate the diagnostic accuracy.
关键词Photoacoustic imaging support vector machine tumor malignance
出版地1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
会议地点Beijing, China
收录类别CPCI ; CPCI-S ; EI
语种英语
资助项目Natural Science Foundation of China[61805139]
WOS研究方向Optics
WOS类目Optics
WOS记录号WOS:000451757000032
出版者SPIE-INT SOC OPTICAL ENGINEERING
EI入藏号20184806158459
EI主题词Computer aided diagnosis ; Health care ; Image reconstruction ; Photoacoustic effect ; Tumors
EI分类号Bioengineering and Biology:461 ; Computer Software, Data Handling and Applications:723 ; Computer Applications:723.5 ; Light/Optics:741.1
WOS关键词SHAPE
原始文献类型Proceedings Paper
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29030
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
通讯作者Gao, Fei
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lan, Hengrong,Duan, Tinyang,Zhong, Hongtao,et al. Photoacoustic classification of tumor malignancy based on support vector machine[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE-INT SOC OPTICAL ENGINEERING,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lan, Hengrong]的文章
[Duan, Tinyang]的文章
[Zhong, Hongtao]的文章
百度学术
百度学术中相似的文章
[Lan, Hengrong]的文章
[Duan, Tinyang]的文章
[Zhong, Hongtao]的文章
必应学术
必应学术中相似的文章
[Lan, Hengrong]的文章
[Duan, Tinyang]的文章
[Zhong, Hongtao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 29030.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。