Data-Driven Nonparametric Existence and Association Problems
2018-12-15
发表期刊IEEE TRANSACTIONS ON SIGNAL PROCESSING (IF:4.6[JCR-2023],5.2[5-Year])
ISSN1053-587X
卷号66期号:24页码:6377-6389
发表状态已发表
DOI10.1109/TSP.2018.2875392
摘要We investigate two closely related nonparametric hypothesis testing problems. In the first problem (i.e., the existence problem), we test whether a testing data stream is generated by one of a set of composite distributions. In the second problem (i.e., the association problem), we test which one of the multiple distributions generates a testing data stream. We assume that some distributions in the set are unknown, and instead, only training sequences generated by the corresponding distributions are available. For both problems, we construct the generalized likelihood tests and characterize the error exponents of the maximum error probabilities. For the existence problem, we show that the error exponent is mainly captured by the Chernoff information between the set of composite distributions and alternative distributions. For the association problem, we show that the error exponent is captured by the minimum Chernoff information between each pair of distributions as well as the Kullback-Leibler Divergences between the approximated distributions (via training sequences) and the true distributions. We also show that the ratio between the lengths of training and testing sequences plays an important role in determining the error decay rate.
关键词Multiple hypothesis testing binary composite hypothesis testing generalized likelihood test error exponent KL divergence
URL查看原文
收录类别EI ; SCIE ; SCI
语种英语
资助项目Shenzhen Fundamental Research Fund[KQTD2015033114415450] ; Shenzhen Fundamental Research Fund[ZDSYS201707251409055]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000449396200004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20184606076259
EI主题词Decay (organic) ; Probability ; Statistical tests
EI分类号Biochemistry:801.2 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
WOS关键词DISTRIBUTIONS ; CLASSIFICATION ; CONVERGENCE ; TESTS
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/28719
专题信息科学与技术学院_博士生
通讯作者Liu, Yixian
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 200031, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200031, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100864, Peoples R China
4.Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
5.Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
6.Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
7.Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Yixian,Liang, Yingbin,Cui, Shuguang. Data-Driven Nonparametric Existence and Association Problems[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2018,66(24):6377-6389.
APA Liu, Yixian,Liang, Yingbin,&Cui, Shuguang.(2018).Data-Driven Nonparametric Existence and Association Problems.IEEE TRANSACTIONS ON SIGNAL PROCESSING,66(24),6377-6389.
MLA Liu, Yixian,et al."Data-Driven Nonparametric Existence and Association Problems".IEEE TRANSACTIONS ON SIGNAL PROCESSING 66.24(2018):6377-6389.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Yixian]的文章
[Liang, Yingbin]的文章
[Cui, Shuguang]的文章
百度学术
百度学术中相似的文章
[Liu, Yixian]的文章
[Liang, Yingbin]的文章
[Cui, Shuguang]的文章
必应学术
必应学术中相似的文章
[Liu, Yixian]的文章
[Liang, Yingbin]的文章
[Cui, Shuguang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 28719.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。