ShanghaiTech University Knowledge Management System
Data-Driven Nonparametric Existence and Association Problems | |
2018-12-15 | |
发表期刊 | IEEE TRANSACTIONS ON SIGNAL PROCESSING (IF:4.6[JCR-2023],5.2[5-Year]) |
ISSN | 1053-587X |
卷号 | 66期号:24页码:6377-6389 |
发表状态 | 已发表 |
DOI | 10.1109/TSP.2018.2875392 |
摘要 | We investigate two closely related nonparametric hypothesis testing problems. In the first problem (i.e., the existence problem), we test whether a testing data stream is generated by one of a set of composite distributions. In the second problem (i.e., the association problem), we test which one of the multiple distributions generates a testing data stream. We assume that some distributions in the set are unknown, and instead, only training sequences generated by the corresponding distributions are available. For both problems, we construct the generalized likelihood tests and characterize the error exponents of the maximum error probabilities. For the existence problem, we show that the error exponent is mainly captured by the Chernoff information between the set of composite distributions and alternative distributions. For the association problem, we show that the error exponent is captured by the minimum Chernoff information between each pair of distributions as well as the Kullback-Leibler Divergences between the approximated distributions (via training sequences) and the true distributions. We also show that the ratio between the lengths of training and testing sequences plays an important role in determining the error decay rate. |
关键词 | Multiple hypothesis testing binary composite hypothesis testing generalized likelihood test error exponent KL divergence |
URL | 查看原文 |
收录类别 | EI ; SCIE ; SCI |
语种 | 英语 |
资助项目 | Shenzhen Fundamental Research Fund[KQTD2015033114415450] ; Shenzhen Fundamental Research Fund[ZDSYS201707251409055] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000449396200004 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20184606076259 |
EI主题词 | Decay (organic) ; Probability ; Statistical tests |
EI分类号 | Biochemistry:801.2 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 |
WOS关键词 | DISTRIBUTIONS ; CLASSIFICATION ; CONVERGENCE ; TESTS |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/28719 |
专题 | 信息科学与技术学院_博士生 |
通讯作者 | Liu, Yixian |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 200031, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200031, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100864, Peoples R China 4.Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA 5.Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China 6.Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China 7.Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Yixian,Liang, Yingbin,Cui, Shuguang. Data-Driven Nonparametric Existence and Association Problems[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2018,66(24):6377-6389. |
APA | Liu, Yixian,Liang, Yingbin,&Cui, Shuguang.(2018).Data-Driven Nonparametric Existence and Association Problems.IEEE TRANSACTIONS ON SIGNAL PROCESSING,66(24),6377-6389. |
MLA | Liu, Yixian,et al."Data-Driven Nonparametric Existence and Association Problems".IEEE TRANSACTIONS ON SIGNAL PROCESSING 66.24(2018):6377-6389. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。