Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches
2023-02-01
发表期刊JOURNAL OF CHEMICAL INFORMATION AND MODELING
ISSN1549-9596
EISSN1549-960X
卷号63期号:5页码:1413-1428
发表状态已发表
DOI10.1021/acs.jcim.2c01634
摘要Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
关键词biology drug allosteric mechanisms artificial intelligence protein allostery first principles high-throughput deep mutational scanning allosteric drug design machine learning structural prediction methods SARS-CoV-2
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Institute of General Medical Sciences of the National Institutes of Health[R15GM122013] ; Kay Family Foundation[A20-0032]
WOS研究方向Pharmacology & Pharmacy ; Chemistry ; Computer Science
WOS类目Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000938209400001
出版者AMER CHEMICAL SOC
EI入藏号20230913654348
EI主题词Coronavirus
EI分类号461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 461.9 Biology ; 801.4 Physical Chemistry ; 804.1 Organic Compounds
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286842
专题免疫化学研究所
免疫化学研究所_PI研究组_白芳组
通讯作者Verkhivker, Gennady M.
作者单位
1.Chapman Univ, Schmid Coll Sci & Technol, Keck Ctr Sci & Engn, Grad Program Computat & Data Sci, Orange, CA 92866 USA
2.Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Sch Life Sci & Technol & Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Southern Methodist Univ, Ctr Res Comp, Ctr Drug Discovery Design & Delivery CD4, Dept Chem, Dallas, TX 75205 USA
4.Chapman Univ Sch Pharm, Dept Biomed & Pharmaceut Sci, Irvine, CA 92618 USA
推荐引用方式
GB/T 7714
Agajanian, Steve,Alshahrani, Mohammed,Bai, Fang,et al. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2023,63(5):1413-1428.
APA Agajanian, Steve,Alshahrani, Mohammed,Bai, Fang,Tao, Peng,&Verkhivker, Gennady M..(2023).Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches.JOURNAL OF CHEMICAL INFORMATION AND MODELING,63(5),1413-1428.
MLA Agajanian, Steve,et al."Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches".JOURNAL OF CHEMICAL INFORMATION AND MODELING 63.5(2023):1413-1428.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Agajanian, Steve]的文章
[Alshahrani, Mohammed]的文章
[Bai, Fang]的文章
百度学术
百度学术中相似的文章
[Agajanian, Steve]的文章
[Alshahrani, Mohammed]的文章
[Bai, Fang]的文章
必应学术
必应学术中相似的文章
[Agajanian, Steve]的文章
[Alshahrani, Mohammed]的文章
[Bai, Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。