SIMPLE: Specialized Model-Sample Matching for Domain Generalization
2023-02
会议录名称THE 11TH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS
发表状态正式接收
摘要In domain generalization (DG), most existing methods aspire to fine-tune a specific pretrained model through novel DG algorithms. In this paper, we propose an alternative direction, i.e., to efficiently leverage a pool of pretrained models without fine-tuning. Through extensive empirical and theoretical evidence, we demonstrate that (1) pretrained models have possessed generalization to some extent while there is no single best pretrained model across all distribution shifts, and (2) out-of-distribution (OOD) generalization error depends on the fitness between the pretrained model and unseen test distributions. This analysis motivates us to incorporate diverse pretrained models and to dispatch the best matched models for each OOD sample by means of recommendation techniques. To this end, we propose SIMPLE, a specialized model-sample matching method for domain generalization. First, the predictions of pretrained models are adapted to the target domain by a linear label space transformation. A matching network aware of model specialty is then proposed to dynamically recommend proper pretrained models to predict each test sample. The experiments on DomainBed show that our method achieves significant performance improvements (up to 12.2% for individual dataset and 3.9% on average) compared to state-of-the-art (SOTA) methods and further achieves 6.1% gain via enlarging the pretrained model pool. Moreover, our method is highly efficient and achieves more than 1000× training speedup compared to the conventional DG methods with fine-tuning a pretrained model. Code and supplemental materials are available at https://seqml.github.io/simple. © 2023 11th International Conference on Learning Representations, ICLR 2023. All rights reserved.
会议录编者/会议主办者Baidu ; DeepMind ; et al. ; Google Research ; Huawei ; Meta AI
关键词Generalisation Generalization algorithms Generalization Error Matched models Matchings Model samples Novel domain Shift-and Simple++ Without fine-tuning
会议名称11th International Conference on Learning Representations, ICLR 2023
会议地点Kigali, Rwanda
会议日期May 1, 2023 - May 5, 2023
收录类别EI
语种英语
出版者International Conference on Learning Representations, ICLR
EI入藏号20243116790514
EI主题词Linear transformations
EI分类号921.3 Mathematical Transformations
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286568
专题信息科学与技术学院_PI研究组_张海鹏组
通讯作者Ren, Kan; Jiang, Xinyang
推荐引用方式
GB/T 7714
Li, Ziyue,Ren, Kan,Jiang, Xinyang,et al. SIMPLE: Specialized Model-Sample Matching for Domain Generalization[C]//Baidu, DeepMind, et al., Google Research, Huawei, Meta AI:International Conference on Learning Representations, ICLR,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Ziyue]的文章
[Ren, Kan]的文章
[Jiang, Xinyang]的文章
百度学术
百度学术中相似的文章
[Li, Ziyue]的文章
[Ren, Kan]的文章
[Jiang, Xinyang]的文章
必应学术
必应学术中相似的文章
[Li, Ziyue]的文章
[Ren, Kan]的文章
[Jiang, Xinyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。