Unconventional computing based on magnetic tunnel junction
2023-04-01
发表期刊APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING;
ISSN0947-8396
EISSN1432-0630
卷号129期号:4
发表状态已发表
DOI10.1007/s00339-022-06365-4
摘要The conventional computing method based on the von Neumann architecture is limited by a series of problems such as high energy consumption, finite data exchange bandwidth between processors and storage media, etc., and it is difficult to achieve higher computing efficiency. A more efficient unconventional computing architecture is urgently needed to overcome these problems. Neuromorphic computing and stochastic computing have been considered to be two competitive candidates for unconventional computing, due to their extraordinary potential for energy-efficient and high-performance computing. Although conventional electronic devices can mimic the topology of the human brain, these require high power consumption and large area. Spintronic devices represented by magnetic tunnel junctions (MTJs) exhibit remarkable high-energy efficiency, non-volatility, and similarity to biological nervous systems, making them one of the promising candidates for unconventional computing. In this work, we review the fundamentals of MTJs as well as the development of MTJ-based neurons, synapses, and probabilistic-bit. In the section on neuromorphic computing, we review a variety of neural networks composed of MTJ-based neurons and synapses, including multilayer perceptrons, convolutional neural networks, recurrent neural networks, and spiking neural networks, which are the closest to the biological neural system. In the section on stochastic computing, we review the applications of MTJ-based p-bits, including Boltzmann machines, Ising machines, and Bayesian networks. Furthermore, the challenges to developing these novel technologies are briefly discussed at the end of each section.
关键词Magnetic tunnel junction Neuromorphic computing Spintronic neuron Spintronic synapse Stochastic switching Unconventional computing
学科门类Chemistry (all) ; Materials Science (all)
URL查看原文
收录类别SCOPUS ; EI ; SCI
语种英语
资助项目National Key R&D Program of China[2022YFB4401700] ; Shanghai Sailing Program[20YF1430400] ; NSFC["MOE-2019-T2-2-215","FRC-A-8000194-01-00","12104301"] ; null[MOE-2017- T2-2-114]
WOS研究方向Materials Science ; Physics
WOS类目Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000943247300002
出版者SPRINGER HEIDELBERG
EI入藏号20231113739986
EI主题词Energy efficiency
EI分类号461.9 Biology ; 525.2 Energy Conservation ; 525.3 Energy Utilization ; 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing
原始文献类型Article
Scopus 记录号2-s2.0-85149928709
来源库SCOPUS
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286531
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_祝智峰组
通讯作者Zhu, Zhifeng; Liang, Gengchiau
作者单位
1.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai 201210, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Cai, Baofang,He, Yihan,Xin, Yue,et al. Unconventional computing based on magnetic tunnel junction[J]. APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING;,2023,129(4).
APA Cai, Baofang.,He, Yihan.,Xin, Yue.,Yuan, Zhengping.,Zhang, Xue.,...&Liang, Gengchiau.(2023).Unconventional computing based on magnetic tunnel junction.APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING;,129(4).
MLA Cai, Baofang,et al."Unconventional computing based on magnetic tunnel junction".APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING; 129.4(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cai, Baofang]的文章
[He, Yihan]的文章
[Xin, Yue]的文章
百度学术
百度学术中相似的文章
[Cai, Baofang]的文章
[He, Yihan]的文章
[Xin, Yue]的文章
必应学术
必应学术中相似的文章
[Cai, Baofang]的文章
[He, Yihan]的文章
[Xin, Yue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s00339-022-06365-4.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。