ShanghaiTech University Knowledge Management System
Unconventional computing based on magnetic tunnel junction | |
2023-04-01 | |
发表期刊 | APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING; |
ISSN | 0947-8396 |
EISSN | 1432-0630 |
卷号 | 129期号:4 |
发表状态 | 已发表 |
DOI | 10.1007/s00339-022-06365-4 |
摘要 | The conventional computing method based on the von Neumann architecture is limited by a series of problems such as high energy consumption, finite data exchange bandwidth between processors and storage media, etc., and it is difficult to achieve higher computing efficiency. A more efficient unconventional computing architecture is urgently needed to overcome these problems. Neuromorphic computing and stochastic computing have been considered to be two competitive candidates for unconventional computing, due to their extraordinary potential for energy-efficient and high-performance computing. Although conventional electronic devices can mimic the topology of the human brain, these require high power consumption and large area. Spintronic devices represented by magnetic tunnel junctions (MTJs) exhibit remarkable high-energy efficiency, non-volatility, and similarity to biological nervous systems, making them one of the promising candidates for unconventional computing. In this work, we review the fundamentals of MTJs as well as the development of MTJ-based neurons, synapses, and probabilistic-bit. In the section on neuromorphic computing, we review a variety of neural networks composed of MTJ-based neurons and synapses, including multilayer perceptrons, convolutional neural networks, recurrent neural networks, and spiking neural networks, which are the closest to the biological neural system. In the section on stochastic computing, we review the applications of MTJ-based p-bits, including Boltzmann machines, Ising machines, and Bayesian networks. Furthermore, the challenges to developing these novel technologies are briefly discussed at the end of each section. |
关键词 | Magnetic tunnel junction Neuromorphic computing Spintronic neuron Spintronic synapse Stochastic switching Unconventional computing |
学科门类 | Chemistry (all) ; Materials Science (all) |
URL | 查看原文 |
收录类别 | SCOPUS ; EI ; SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2022YFB4401700] ; Shanghai Sailing Program[20YF1430400] ; NSFC["MOE-2019-T2-2-215","FRC-A-8000194-01-00","12104301"] ; null[MOE-2017- T2-2-114] |
WOS研究方向 | Materials Science ; Physics |
WOS类目 | Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000943247300002 |
出版者 | SPRINGER HEIDELBERG |
EI入藏号 | 20231113739986 |
EI主题词 | Energy efficiency |
EI分类号 | 461.9 Biology ; 525.2 Energy Conservation ; 525.3 Energy Utilization ; 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing |
原始文献类型 | Article |
Scopus 记录号 | 2-s2.0-85149928709 |
来源库 | SCOPUS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286531 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_祝智峰组 |
通讯作者 | Zhu, Zhifeng; Liang, Gengchiau |
作者单位 | 1.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 3.Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai 201210, Peoples R China |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Cai, Baofang,He, Yihan,Xin, Yue,et al. Unconventional computing based on magnetic tunnel junction[J]. APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING;,2023,129(4). |
APA | Cai, Baofang.,He, Yihan.,Xin, Yue.,Yuan, Zhengping.,Zhang, Xue.,...&Liang, Gengchiau.(2023).Unconventional computing based on magnetic tunnel junction.APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING;,129(4). |
MLA | Cai, Baofang,et al."Unconventional computing based on magnetic tunnel junction".APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING; 129.4(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cai, Baofang]的文章 |
[He, Yihan]的文章 |
[Xin, Yue]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cai, Baofang]的文章 |
[He, Yihan]的文章 |
[Xin, Yue]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cai, Baofang]的文章 |
[He, Yihan]的文章 |
[Xin, Yue]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。