ShanghaiTech University Knowledge Management System
Specification-based Autonomous Driving System Testing | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON SOFTWARE ENGINEERING; (IF:6.5[JCR-2023],7.0[5-Year]) |
ISSN | 0098-5589 |
EISSN | 1939-3520 |
卷号 | 49期号:6页码:3391-3410 |
发表状态 | 已发表 |
DOI | 10.1109/TSE.2023.3254142 |
摘要 | Autonomous vehicle (AV) systems must be comprehensively tested and evaluated before they can be deployed. High-fidelity simulators such as CARLA or LGSVL allow this to be done safely in very realistic and highly customizable environments. Existing testing approaches, however, fail to test simulated AVs systematically, as they focus on specific scenarios and oracles (e.g., lane following scenario with the “no collision” requirement) and lack any coverage criteria measures. In this paper, we propose $\mathtt {AVUnit}$, a framework for systematically testing AV systems against customizable correctness specifications. Designed modularly to support different simulators, $\mathtt {AVUnit}$ consists of two new languages for specifying dynamic properties of scenes (e.g. changing pedestrian behaviour after waypoints) and fine-grained assertions about the AV's journey. $\mathtt {AVUnit}$ further supports multiple fuzzing algorithms that automatically search for test cases that violate these assertions, using robustness and coverage measures as fitness metrics. We evaluated the implementation of $\mathtt {AVUnit}$ for the LGSVL+Apollo simulation environment, finding 19 kinds of issues in Apollo, which indicate that the open-source Apollo does not perform well in complex intersections and lane-changing related scenarios. |
关键词 | Autonomous Driving System Coverage Criteria Fuzzing Planning Roads Sensors Specification Languages Sun Testing Vehicle dynamics |
学科门类 | Software |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCOPUS |
语种 | 英语 |
资助项目 | Ministry of Education, Singapore under its Academic Research Fund Tier 3[MOET32020-0004] ; Ministry of Education, Singapore under its Academic Research Fund Tier 2[MOE-T2EP20120-0004] ; NRF Investigatorship[NRF-NRFI06-2020-0001] ; National Natural Science Foundation of China[62032010] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Software Engineering ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001012752300004 |
出版者 | IEEE COMPUTER SOC |
EI入藏号 | 20231113736846 |
EI主题词 | Autonomous vehicles |
EI分类号 | 432 Highway Transportation ; 723.1.1 Computer Programming Languages ; 731.6 Robot Applications ; 902.2 Codes and Standards |
原始文献类型 | Article |
Scopus 记录号 | 2-s2.0-85149856139 |
来源库 | SCOPUS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286524 |
专题 | 信息科学与技术学院_PI研究组_陈宇奇 |
作者单位 | 1.School of Computer Science and Engineering, Nanyang Technology University, Singapore 2.School of Computing and Information Systems, Singapore Management University, Singapore 3.ShanghaiTech University, Shanghai, China 4.Xi'an Jiaotong University, Xi'an, Shaanxi, China |
推荐引用方式 GB/T 7714 | Yuan Zhou,Yang Sun,Yun Tang,et al. Specification-based Autonomous Driving System Testing[J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING;,2023,49(6):3391-3410. |
APA | Yuan Zhou.,Yang Sun.,Yun Tang.,Yuqi Chen.,Jun Sun.,...&Zijiang Yang.(2023).Specification-based Autonomous Driving System Testing.IEEE TRANSACTIONS ON SOFTWARE ENGINEERING;,49(6),3391-3410. |
MLA | Yuan Zhou,et al."Specification-based Autonomous Driving System Testing".IEEE TRANSACTIONS ON SOFTWARE ENGINEERING; 49.6(2023):3391-3410. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuan Zhou]的文章 |
[Yang Sun]的文章 |
[Yun Tang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuan Zhou]的文章 |
[Yang Sun]的文章 |
[Yun Tang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuan Zhou]的文章 |
[Yang Sun]的文章 |
[Yun Tang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。