消息
×
loading..
A Speed- and Energy-Driven Holistic Training Framework for Sparse CNN Accelerators
2023-04
会议录名称2023 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE (DATE)
ISSN1530-1591
卷号2023-April
发表状态已发表
DOI10.23919/DATE56975.2023.10136946
摘要

Sparse convolution neural network (CNN) accelerators have shown to achieve high processing speed and low energy consumption by leveraging zero weights or activations, which can be further optimized by finely tuning the sparse activation maps in training process. In this paper, we propose a CNN training framework targeting at reducing energy consumption and processing cycles in sparse CNN accelerators. We first model accelerator's energy consumption and processing cycles as functions of layer-wise activation map sparsity. Then we leverage the model and propose a hybrid regularization approximation method to further sparsify activation maps in the training process. The results show that our proposed framework can reduce the energy consumption of Eyeriss by 31.33%, 20.6% and 26.6% respectively on MobileNet-V2, SqueezeNet and Inception-V3. In addition, the processing speed can be increased by 1.96X, 1.4X and 1.65X respectively.

会议录编者/会议主办者ACM Special Interest Group on Design Automation (SIGDA) ; European Design and Automation Association (EDA) ; IEEE Council on Electronic Design Automation (CEDA) ; SEMI, Electronic System Design (ESD) Alliance
关键词CNN Accelerator, Training, Activation Map Sparsification, Energy Consumption, Processing Speed Chemical activation Low power electronics Activation map sparsification Activation maps Consumption cycles Convolution neural network Convolution neural network accelerator Energy processing Energy-consumption Processing speed Sparsification Training process
会议名称2023 Design, Automation and Test in Europe Conference and Exhibition, DATE 2023
会议地点Antwerp, Belgium
会议日期April 17, 2023 - April 19, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20232614287858
EI主题词Energy utilization
EI分类号525.3 Energy Utilization ; 802.2 Chemical Reactions ; 804 Chemical Products Generally
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/284209
专题信息科学与技术学院
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, P. R. China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yuanchen Qu,Yu Ma,Pingqiang Zhou. A Speed- and Energy-Driven Holistic Training Framework for Sparse CNN Accelerators[C]//ACM Special Interest Group on Design Automation (SIGDA), European Design and Automation Association (EDA), IEEE Council on Electronic Design Automation (CEDA), SEMI, Electronic System Design (ESD) Alliance:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yuanchen Qu]的文章
[Yu Ma]的文章
[Pingqiang Zhou]的文章
百度学术
百度学术中相似的文章
[Yuanchen Qu]的文章
[Yu Ma]的文章
[Pingqiang Zhou]的文章
必应学术
必应学术中相似的文章
[Yuanchen Qu]的文章
[Yu Ma]的文章
[Pingqiang Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。