| |||||||
ShanghaiTech University Knowledge Management System
A Speed- and Energy-Driven Holistic Training Framework for Sparse CNN Accelerators | |
2023-04 | |
会议录名称 | 2023 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE (DATE)
![]() |
ISSN | 1530-1591 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.23919/DATE56975.2023.10136946 |
摘要 | Sparse convolution neural network (CNN) accelerators have shown to achieve high processing speed and low energy consumption by leveraging zero weights or activations, which can be further optimized by finely tuning the sparse activation maps in training process. In this paper, we propose a CNN training framework targeting at reducing energy consumption and processing cycles in sparse CNN accelerators. We first model accelerator's energy consumption and processing cycles as functions of layer-wise activation map sparsity. Then we leverage the model and propose a hybrid regularization approximation method to further sparsify activation maps in the training process. The results show that our proposed framework can reduce the energy consumption of Eyeriss by 31.33%, 20.6% and 26.6% respectively on MobileNet-V2, SqueezeNet and Inception-V3. In addition, the processing speed can be increased by 1.96X, 1.4X and 1.65X respectively. |
会议录编者/会议主办者 | ACM Special Interest Group on Design Automation (SIGDA) ; European Design and Automation Association (EDA) ; IEEE Council on Electronic Design Automation (CEDA) ; SEMI, Electronic System Design (ESD) Alliance |
关键词 | CNN Accelerator, Training, Activation Map Sparsification, Energy Consumption, Processing Speed Chemical activation Low power electronics Activation map sparsification Activation maps Consumption cycles Convolution neural network Convolution neural network accelerator Energy processing Energy-consumption Processing speed Sparsification Training process |
会议名称 | 2023 Design, Automation and Test in Europe Conference and Exhibition, DATE 2023 |
会议地点 | Antwerp, Belgium |
会议日期 | April 17, 2023 - April 19, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20232614287858 |
EI主题词 | Energy utilization |
EI分类号 | 525.3 Energy Utilization ; 802.2 Chemical Reactions ; 804 Chemical Products Generally |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/284209 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, P. R. China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yuanchen Qu,Yu Ma,Pingqiang Zhou. A Speed- and Energy-Driven Holistic Training Framework for Sparse CNN Accelerators[C]//ACM Special Interest Group on Design Automation (SIGDA), European Design and Automation Association (EDA), IEEE Council on Electronic Design Automation (CEDA), SEMI, Electronic System Design (ESD) Alliance:Institute of Electrical and Electronics Engineers Inc.,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。