| |||||||
ShanghaiTech University Knowledge Management System
Modular Graph Encoding and Hierarchical Readout for Functional Brain Network Based eMCI Diagnosis | |
2022 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 13754 LNCS |
页码 | 69-78 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-21083-9_7 |
摘要 | The functional brain network, estimated from functional magnetic resonance imaging (fMRI), have been widely used to capture subtle brain function abnormality and perform diagnosis of brain diseases, such as early mild cognitive impairment (eMCI), i.e., with Graph Convolutional Network (GCN). However, there are at least two issues with GCN-based diagnosis methods, i.e., (1) over-smoothed representation of nodal features after using general convolutional kernels, and (2) simple blind readout of graph features without considering hierarchical organizations of brain functions. To address these two issues, we propose a GCN-based architecture (HFBN-GCN), based on the hierarchical functional brain network (defined with priors from brain atlases). Specifically, first, we design a "topology-focused brain encoder" to enhance nodal features by using (1) one branch of GCNs to focus on limited message passing among functional modules of each hierarchical level for alleviating over-smoothing issue and (2) another branch of GCNs to processes whole brain network for retaining original communication of information. Second, we design a "hierarchical brain readout" to utilize pre-defined hierarchical information to guide the coarse-to-fine readout process. We evaluate our proposed HFBN-GCN on the ADNI dataset with 910 fMRI data. Our proposed method achieves 73.4% accuracy (with 77.1% sensitivity and 71.1% specificity) in eMCI diagnosis, where both proposed strategies help boost performance compared to simply-stacked GCNs. In addition, our method suggests the dorsal attention network, saliency network and default mode network as the most crucial functional sub-networks for eMCI identifications. Our method thus is potentially beneficial for both clinical applications and neurological studies. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. |
关键词 | Convolution Functional neuroimaging Graph neural networks Magnetic resonance imaging Message passing Network coding Brain functions Brain networks Cognitive impairment Convolutional networks Early mild cognitive impairment Functional magnetic resonance imaging Graph convolutional network Graph encoding Modular graph Network-based |
会议名称 | 1st International Workshop on Imaging Systems for GI Endoscopy, ISGIE 2022 and 4th International Workshop on GRaphs in biomedicAl Image anaLysis, GRAIL 2022 held in Conjunction with 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Singapore, Singapore |
会议日期 | September 18, 2022 - September 18, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Gastroenterology & Hepatology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Gastroenterology & Hepatology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000925204900007 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20230113332485 |
EI主题词 | Diagnosis |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 723.1 Computer Programming ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282067 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_张寒组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.Shanghaitech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.Shanghaitech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 3.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院; 信息科学与技术学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Mei, Lang,Liu, Mianxin,Bian, Lingbin,et al. Modular Graph Encoding and Hierarchical Readout for Functional Brain Network Based eMCI Diagnosis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2022:69-78. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。