Early Forecast of Traffic Accident Impact Based on a Single-Snapshot Observation (Student Abstract)
2022-06-30
会议录名称PROCEEDINGS OF THE 36TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2022
卷号36
页码13015-13016
发表状态已发表
摘要

Predicting and quantifying the impact of traffic accidents is necessary and critical to Intelligent Transport Systems (ITS). As a state-of-the-art technique in graph learning, current graph neural networks heavily rely on graph Fourier transform, assuming homophily among the neighborhood. However, the homophily assumption makes it challenging to characterize abrupt signals such as traffic accidents. Our paper proposes an abrupt graph wavelet network (AGWN) to model traffic accidents and predict their time durations using only one single snapshot. Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Accidents Graph neural networks Intelligent systems Intelligent vehicle highway systems 'current Early forecasts Graph Fourier transforms Graph neural networks Homophily Intelligent transport Neighbourhood Single snapshots State-of-the-art techniques Transport systems
会议名称36th AAAI Conference on Artificial Intelligence, AAAI 2022
会议地点Virtual, Online
会议日期February 22, 2022 - March 1, 2022
收录类别EI
语种英语
出版者Association for the Advancement of Artificial Intelligence
EI入藏号20230713571492
EI主题词Forecasting
EI分类号406.1 Highway Systems ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 914.1 Accidents and Accident Prevention
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282040
专题信息科学与技术学院_硕士生
作者单位
1.University of Notre Dame, United States;
2.Shanghai Tech University, China;
3.South Dakota State University, United States;
4.University of Nevada, Las Vegas, United States;
5.Virginia Tech, United States;
6.Mississippi State University, United States
推荐引用方式
GB/T 7714
Meng, Guangyu,Jiang, Qisheng,Fu, Kaiqun,et al. Early Forecast of Traffic Accident Impact Based on a Single-Snapshot Observation (Student Abstract)[C]//Association for the Advancement of Artificial Intelligence:Association for the Advancement of Artificial Intelligence,2022:13015-13016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meng, Guangyu]的文章
[Jiang, Qisheng]的文章
[Fu, Kaiqun]的文章
百度学术
百度学术中相似的文章
[Meng, Guangyu]的文章
[Jiang, Qisheng]的文章
[Fu, Kaiqun]的文章
必应学术
必应学术中相似的文章
[Meng, Guangyu]的文章
[Jiang, Qisheng]的文章
[Fu, Kaiqun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。