消息
×
loading..
A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning
2023
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1536-1276
EISSN1558-2248
卷号22期号:9页码:1-1
发表状态已发表
DOI10.1109/TWC.2023.3239400
摘要

Over-the-air federated learning (FL) is a promising privacy-preserving edge artificial intelligence paradigm, where over-the-air computation enables spectral-efficient model aggregation by achieving simultaneous communication and aggregation. However, due to limited transmit power, the performance of over-the-air FL is limited by the device with the worst channel condition toward the edge server. In this paper, we leverage reconfigurable intelligent surface (RIS) to mitigate the communication bottleneck of over-the-air FL and explicitly characterize the corresponding convergence upper bound. The convergence analysis illustrates the detrimental impact of the accumulated aggregation error over all rounds and inspires us to formulate a time-average transmission distortion minimization problem by jointly optimizing the transceiver and RIS phase-shifts. To reduce the computation complexity and enhance the model aggregation accuracy, we develop a graph neural network (GNN) based learning algorithm to directly map channel coefficients to the optimized network parameters. By exploiting permutation equivalence and invariance properties of graphs, the parameter dimension of the proposed algorithm is independent of the number of edge devices, which reduces the computational complexity and improves the algorithmic scalability. Simulations show that the proposed algorithm speeds up the computation by three orders of magnitude compared to the baselines, while achieving performance superiority and algorithmic robustness. IEEE

关键词Agglomeration Data privacy Learning algorithms Learning systems Parallel processing systems Transceivers Computational modelling Convergence Federated learning Graph neural networks Optimisations Over the airs Over-the-air computation Reconfigurable Reconfigurable intelligent surface Resource management
URL查看原文
收录类别EI ; SCOPUS
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20230813624328
EI主题词Complex networks
EI分类号716.3 Radio Systems and Equipment ; 722 Computer Systems and Equipment ; 722.4 Digital Computers and Systems ; 723.4.2 Machine Learning ; 802.3 Chemical Operations
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281993
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Centre for Wireless Communication, University of Oulu, Oulu, Finland
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zixin Wang,Yong Zhou,Yinan Zou,et al. A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2023,22(9):1-1.
APA Zixin Wang,Yong Zhou,Yinan Zou,Qiaochu An,Yuanming Shi,&Mehdi Bennis.(2023).A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,22(9),1-1.
MLA Zixin Wang,et al."A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 22.9(2023):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yinan Zou]的文章
百度学术
百度学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yinan Zou]的文章
必应学术
必应学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yinan Zou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。