| |||||||
ShanghaiTech University Knowledge Management System
A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year]) |
ISSN | 1536-1276 |
EISSN | 1558-2248 |
卷号 | 22期号:9页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2023.3239400 |
摘要 | Over-the-air federated learning (FL) is a promising privacy-preserving edge artificial intelligence paradigm, where over-the-air computation enables spectral-efficient model aggregation by achieving simultaneous communication and aggregation. However, due to limited transmit power, the performance of over-the-air FL is limited by the device with the worst channel condition toward the edge server. In this paper, we leverage reconfigurable intelligent surface (RIS) to mitigate the communication bottleneck of over-the-air FL and explicitly characterize the corresponding convergence upper bound. The convergence analysis illustrates the detrimental impact of the accumulated aggregation error over all rounds and inspires us to formulate a time-average transmission distortion minimization problem by jointly optimizing the transceiver and RIS phase-shifts. To reduce the computation complexity and enhance the model aggregation accuracy, we develop a graph neural network (GNN) based learning algorithm to directly map channel coefficients to the optimized network parameters. By exploiting permutation equivalence and invariance properties of graphs, the parameter dimension of the proposed algorithm is independent of the number of edge devices, which reduces the computational complexity and improves the algorithmic scalability. Simulations show that the proposed algorithm speeds up the computation by three orders of magnitude compared to the baselines, while achieving performance superiority and algorithmic robustness. IEEE |
关键词 | Agglomeration Data privacy Learning algorithms Learning systems Parallel processing systems Transceivers Computational modelling Convergence Federated learning Graph neural networks Optimisations Over the airs Over-the-air computation Reconfigurable Reconfigurable intelligent surface Resource management |
URL | 查看原文 |
收录类别 | EI ; SCOPUS |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20230813624328 |
EI主题词 | Complex networks |
EI分类号 | 716.3 Radio Systems and Equipment ; 722 Computer Systems and Equipment ; 722.4 Digital Computers and Systems ; 723.4.2 Machine Learning ; 802.3 Chemical Operations |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281993 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Centre for Wireless Communication, University of Oulu, Oulu, Finland |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zixin Wang,Yong Zhou,Yinan Zou,et al. A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2023,22(9):1-1. |
APA | Zixin Wang,Yong Zhou,Yinan Zou,Qiaochu An,Yuanming Shi,&Mehdi Bennis.(2023).A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,22(9),1-1. |
MLA | Zixin Wang,et al."A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 22.9(2023):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zixin Wang]的文章 |
[Yong Zhou]的文章 |
[Yinan Zou]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zixin Wang]的文章 |
[Yong Zhou]的文章 |
[Yinan Zou]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zixin Wang]的文章 |
[Yong Zhou]的文章 |
[Yinan Zou]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。