| |||||||
ShanghaiTech University Knowledge Management System
Online Learning-Based Beamforming for Rate-Splitting Multiple Access: A Constrained Bandit Approach | |
2023 | |
会议录名称 | IEEE ICC 2023 |
ISSN | 1938-1883 |
卷号 | 2023-May |
页码 | 559-564 |
发表状态 | 已发表 |
DOI | 10.1109/ICC45041.2023.10278992 |
摘要 | Rate-splitting multiple access (RSMA) has emerged as a potential non-orthogonal transmission strategy and powerful interference management scheme for 6G. Most of the existing works on RSMA beamforming design assume instantaneous or statistical channel state information (CSI) is available at the transmitter. Such an assumption however is impractical especially in massive multiple-input multiple-output (MIMO) due to the dynamic wireless environments and the challenges in channel estimation. In this work, we propose a novel beamforming design framework based on online learning and online control to adaptively learn the best precoding action for a RSMA-aided downlink massive MIMO without explicit CSI feedback. In particular, we first formulate the precoder selection problem that maximizes the ergodic sum-rate subject to a long-term transmit power constraint as a constrained combinatorial multi-armed bandit (CMAB) problem. Then we propose a precoder selection with bandit learning algorithm for RSMA (PBR). Our theoretical analysis shows that PBR achieves a sublinear regret bound with a long-term power constraint guarantee. Through experimental results, we not only verify our theoretical analysis but also demonstrate the outperformance of PBR in terms of sum-rate and power consumption compared with the conventional transmission schemes without using RSMA. © 2023 IEEE. |
关键词 | Wireless communication Learning systems Power demand Array signal processing Transmitters Precoding Massive MIMO |
会议名称 | 2023 IEEE International Conference on Communications, ICC 2023 |
会议地点 | Rome, Italy |
会议日期 | 28 May-1 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815115287 |
EI主题词 | Beamforming |
EI分类号 | 711.2 Electromagnetic Waves in Relation to Various Structures ; 722.3 Data Communication, Equipment and Techniques ; 723.4.2 Machine Learning |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281929 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_毛奕婕组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shangshang Wang,Jingye Wang,Yijie Mao,et al. Online Learning-Based Beamforming for Rate-Splitting Multiple Access: A Constrained Bandit Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2023:559-564. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。