消息
×
loading..
Online Learning-Based Beamforming for Rate-Splitting Multiple Access: A Constrained Bandit Approach
2023
会议录名称IEEE ICC 2023
ISSN1938-1883
卷号2023-May
页码559-564
发表状态已发表
DOI10.1109/ICC45041.2023.10278992
摘要Rate-splitting multiple access (RSMA) has emerged as a potential non-orthogonal transmission strategy and powerful interference management scheme for 6G. Most of the existing works on RSMA beamforming design assume instantaneous or statistical channel state information (CSI) is available at the transmitter. Such an assumption however is impractical especially in massive multiple-input multiple-output (MIMO) due to the dynamic wireless environments and the challenges in channel estimation. In this work, we propose a novel beamforming design framework based on online learning and online control to adaptively learn the best precoding action for a RSMA-aided downlink massive MIMO without explicit CSI feedback. In particular, we first formulate the precoder selection problem that maximizes the ergodic sum-rate subject to a long-term transmit power constraint as a constrained combinatorial multi-armed bandit (CMAB) problem. Then we propose a precoder selection with bandit learning algorithm for RSMA (PBR). Our theoretical analysis shows that PBR achieves a sublinear regret bound with a long-term power constraint guarantee. Through experimental results, we not only verify our theoretical analysis but also demonstrate the outperformance of PBR in terms of sum-rate and power consumption compared with the conventional transmission schemes without using RSMA. © 2023 IEEE.
关键词Wireless communication Learning systems Power demand Array signal processing Transmitters Precoding Massive MIMO
会议名称2023 IEEE International Conference on Communications, ICC 2023
会议地点Rome, Italy
会议日期28 May-1 June 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234815115287
EI主题词Beamforming
EI分类号711.2 Electromagnetic Waves in Relation to Various Structures ; 722.3 Data Communication, Equipment and Techniques ; 723.4.2 Machine Learning
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281929
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_毛奕婕组
作者单位
School of Information Science and Technology, ShanghaiTech University, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shangshang Wang,Jingye Wang,Yijie Mao,et al. Online Learning-Based Beamforming for Rate-Splitting Multiple Access: A Constrained Bandit Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2023:559-564.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangshang Wang]的文章
[Jingye Wang]的文章
[Yijie Mao]的文章
百度学术
百度学术中相似的文章
[Shangshang Wang]的文章
[Jingye Wang]的文章
[Yijie Mao]的文章
必应学术
必应学术中相似的文章
[Shangshang Wang]的文章
[Jingye Wang]的文章
[Yijie Mao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。