ShanghaiTech University Knowledge Management System
Neural Constrained Combinatorial Bandits | |
2023-05 | |
会议录名称 | IEEE INFOCOM 2023 |
ISSN | 0743-166X |
卷号 | 2023-May |
发表状态 | 已发表 |
DOI | 10.1109/INFOCOM53939.2023.10228958 |
摘要 | Constrained combinatorial contextual bandits have emerged as trending tools in intelligent systems and networks to model reward and cost signals under combinatorial decision-making. On one hand, both signals are complex functions of the context, e.g., in federated learning, training loss (negative reward) and energy consumption (cost) are nonlinear functions of edge devices' system conditions (context). On the other hand, there are cumulative constraints on costs, e.g., the accumulated energy consumption should be budgeted by energy resources. Besides, real-time systems often require such constraints to be guaranteed anytime or in each round, e.g., ensuring anytime fairness for task assignment to maintain the credibility of crowdsourcing platforms for workers. This setting imposes a challenge on how to simultaneously achieve reward maximization while subjecting to anytime cumulative constraints. To address such challenge, we propose a primal-dual algorithm (Neural-PD) whose primal component adopts multi-layer perceptrons to estimate reward and cost functions, and its dual component estimates the Lagrange multiplier with the virtual queue. By integrating neural tangent kernel theory and Lyapunov-drift techniques, we prove Neural-PD achieves a sharp regret bound and a zero constraint violation. We also show Neural-PD outperforms existing algorithms with extensive experiments on both synthetic and real-world datasets. © 2023 IEEE. |
关键词 | Training Crowdsourcing Energy consumption Costs Energy resources Decision making Real-time systems |
会议名称 | 42nd IEEE International Conference on Computer Communications, INFOCOM 2023 |
会议地点 | New York City, NY, USA |
会议日期 | 17-20 May 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233814771578 |
EI主题词 | Energy resources |
EI分类号 | 525.1 Energy Resources and Renewable Energy Issues ; 525.3 Energy Utilization ; 722.4 Digital Computers and Systems ; 723.4 Artificial Intelligence ; 911 Cost and Value Engineering ; Industrial Economics ; 912.2 Management ; 921.5 Optimization Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281918 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘鑫组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shangshang Wang,Simeng Bian,Xin Liu,et al. Neural Constrained Combinatorial Bandits[C]:Institute of Electrical and Electronics Engineers Inc.,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。