Neural Constrained Combinatorial Bandits
2023-05
会议录名称IEEE INFOCOM 2023
ISSN0743-166X
卷号2023-May
发表状态已发表
DOI10.1109/INFOCOM53939.2023.10228958
摘要Constrained combinatorial contextual bandits have emerged as trending tools in intelligent systems and networks to model reward and cost signals under combinatorial decision-making. On one hand, both signals are complex functions of the context, e.g., in federated learning, training loss (negative reward) and energy consumption (cost) are nonlinear functions of edge devices' system conditions (context). On the other hand, there are cumulative constraints on costs, e.g., the accumulated energy consumption should be budgeted by energy resources. Besides, real-time systems often require such constraints to be guaranteed anytime or in each round, e.g., ensuring anytime fairness for task assignment to maintain the credibility of crowdsourcing platforms for workers. This setting imposes a challenge on how to simultaneously achieve reward maximization while subjecting to anytime cumulative constraints. To address such challenge, we propose a primal-dual algorithm (Neural-PD) whose primal component adopts multi-layer perceptrons to estimate reward and cost functions, and its dual component estimates the Lagrange multiplier with the virtual queue. By integrating neural tangent kernel theory and Lyapunov-drift techniques, we prove Neural-PD achieves a sharp regret bound and a zero constraint violation. We also show Neural-PD outperforms existing algorithms with extensive experiments on both synthetic and real-world datasets. © 2023 IEEE.
关键词Training Crowdsourcing Energy consumption Costs Energy resources Decision making Real-time systems
会议名称42nd IEEE International Conference on Computer Communications, INFOCOM 2023
会议地点New York City, NY, USA
会议日期17-20 May 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233814771578
EI主题词Energy resources
EI分类号525.1 Energy Resources and Renewable Energy Issues ; 525.3 Energy Utilization ; 722.4 Digital Computers and Systems ; 723.4 Artificial Intelligence ; 911 Cost and Value Engineering ; Industrial Economics ; 912.2 Management ; 921.5 Optimization Techniques
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281918
专题信息科学与技术学院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘鑫组
作者单位
School of Information Science and Technology, ShanghaiTech University, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shangshang Wang,Simeng Bian,Xin Liu,et al. Neural Constrained Combinatorial Bandits[C]:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Xin Liu]的文章
百度学术
百度学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Xin Liu]的文章
必应学术
必应学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Xin Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。