Attribute annotation on large-scale image database by active knowledge transfer
2018-10
发表期刊IMAGE AND VISION COMPUTING (IF:4.2[JCR-2023],4.3[5-Year])
ISSN0262-8856
卷号78页码:1-13
发表状态已发表
DOI10.1016/j.imavis.2018.06.012
摘要Attributes are widely used in different vision tasks. However, existing attribute resources are quite limited and most of them are not in large scale. Current attribute annotation process is generally done by human, which is expensive and time-consuming. in this paper, we propose a novel framework to perform effective attribute annotations. Based on the common knowledge that attributes can be shared among different classes, we leverage the benefits of transfer learning and active learning together to transfer knowledge from some existing small attribute databases to large-scale target databases. In order to learn more robust attribute models, attribute relationships are incorporated to assist the learning process. Using the proposed framework, we conduct extensive experiments on two large-scale image databases, i.e. ImageNet and SUN Attribute, where high quality automatic attribute annotations are obtained. (C) 2018 Elsevier B.V. All rights reserved.
关键词Attribute Annotation Relationship Active learning Transfer learning
收录类别SCI ; SCIE ; EI
语种英语
资助项目Youth Innovation Promotion Association CAS[2015085]
WOS研究方向Computer Science ; Engineering ; Optics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Optics
WOS记录号WOS:000446143900001
出版者ELSEVIER SCIENCE BV
EI入藏号20183205666383
EI主题词Artificial intelligence ; Database systems ; Knowledge management
EI分类号Computer Software, Data Handling and Applications:723
WOS关键词FACIAL ATTRIBUTES ; OBJECT CLASSES ; RECOGNITION
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/28095
专题信息科学与技术学院_博士生
通讯作者Wang, Ruiping
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiang, Huajie,Wang, Ruiping,Li, Yan,et al. Attribute annotation on large-scale image database by active knowledge transfer[J]. IMAGE AND VISION COMPUTING,2018,78:1-13.
APA Jiang, Huajie,Wang, Ruiping,Li, Yan,Liu, Haomiao,Shan, Shiguang,&Chen, Xilin.(2018).Attribute annotation on large-scale image database by active knowledge transfer.IMAGE AND VISION COMPUTING,78,1-13.
MLA Jiang, Huajie,et al."Attribute annotation on large-scale image database by active knowledge transfer".IMAGE AND VISION COMPUTING 78(2018):1-13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Li, Yan]的文章
百度学术
百度学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Li, Yan]的文章
必应学术
必应学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Li, Yan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 28095.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。