ShanghaiTech University Knowledge Management System
Adaptive denoising of photoacoustic signal and image based on modified Kalman filter | |
2023 | |
发表期刊 | JOURNAL OF BIOPHOTONICS (IF:2.0[JCR-2023],2.6[5-Year]) |
ISSN | 1864-063X |
EISSN | 1864-0648 |
卷号 | 16期号:5 |
发表状态 | 已发表 |
DOI | 10.1002/jbio.202200362 |
摘要 | As a burgeoning medical imaging method based on hybrid fusion of light and ultrasound, photoacoustic imaging (PAI) has demonstrated high potential in various biomedical applications, especially in revealing the functional and molecular information to improve diagnostic accuracy. However, stemming from weak amplitude and unavoidable random noise, caused by limited laser power and severe attenuation in deep tissue imaging, PA signals are usually of low signal-to-noise ratio, and reconstructed PA images are of low quality. Despite that conventional Kalman filter (KF) can remove Gaussian noise in time domain, it lacks adaptability in real-time estimation due to its fixed model. Moreover, KF-based denoising algorithm has not been applied in PAI before. In this paper, we propose an adaptive modified KF (MKF) targeted at PAI denoising by tuning system noise matrix Q and measurement noise matrix R in the conventional KF model. Additionally, in order to compensate the signal skewing caused by MKF, we cascade the backward part of Rauch-Tung-Striebel smoother, which utilizes the newly determined Q. Finally, as a supplement, we add a commonly used differential filter to remove in-band reflection artifacts. Experimental results using phantom and ex vivo colorectal tissue are provided to prove validity of the algorithm. |
关键词 | adaptive denoising backward RTS smoother modified Kalman filter photoacoustic imaging |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCOPUS |
语种 | 英语 |
资助项目 | Double First-Class Initiative Fund of ShanghaiTech University[2022X0203-904-04] ; National Natural Science Foundation of China[61805139] ; Shanghai Clinical Research and Trial Center[2022A0305-418-02] ; United Imaging Intelligence[2019X0203-501-02] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biophysics ; Optics |
WOS类目 | Biochemical Research Methods ; Biophysics ; Optics |
WOS记录号 | WOS:000917199000001 |
出版者 | WILEY-V C H VERLAG GMBH |
EI入藏号 | 20230513463099 |
EI主题词 | Diagnosis |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 746 Imaging Techniques ; 751.1 Acoustic Waves ; 921 Mathematics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/278846 |
专题 | 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 |
通讯作者 | Gao, Feng; Gao, Fei |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China 2.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China 3.Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Hu, Tianqu,Huang, Zihao,Ge, Peng,et al. Adaptive denoising of photoacoustic signal and image based on modified Kalman filter[J]. JOURNAL OF BIOPHOTONICS,2023,16(5). |
APA | Hu, Tianqu,Huang, Zihao,Ge, Peng,Gao, Feng,&Gao, Fei.(2023).Adaptive denoising of photoacoustic signal and image based on modified Kalman filter.JOURNAL OF BIOPHOTONICS,16(5). |
MLA | Hu, Tianqu,et al."Adaptive denoising of photoacoustic signal and image based on modified Kalman filter".JOURNAL OF BIOPHOTONICS 16.5(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。