Adaptive denoising of photoacoustic signal and image based on modified Kalman filter
2023
发表期刊JOURNAL OF BIOPHOTONICS (IF:2.0[JCR-2023],2.6[5-Year])
ISSN1864-063X
EISSN1864-0648
卷号16期号:5
发表状态已发表
DOI10.1002/jbio.202200362
摘要As a burgeoning medical imaging method based on hybrid fusion of light and ultrasound, photoacoustic imaging (PAI) has demonstrated high potential in various biomedical applications, especially in revealing the functional and molecular information to improve diagnostic accuracy. However, stemming from weak amplitude and unavoidable random noise, caused by limited laser power and severe attenuation in deep tissue imaging, PA signals are usually of low signal-to-noise ratio, and reconstructed PA images are of low quality. Despite that conventional Kalman filter (KF) can remove Gaussian noise in time domain, it lacks adaptability in real-time estimation due to its fixed model. Moreover, KF-based denoising algorithm has not been applied in PAI before. In this paper, we propose an adaptive modified KF (MKF) targeted at PAI denoising by tuning system noise matrix Q and measurement noise matrix R in the conventional KF model. Additionally, in order to compensate the signal skewing caused by MKF, we cascade the backward part of Rauch-Tung-Striebel smoother, which utilizes the newly determined Q. Finally, as a supplement, we add a commonly used differential filter to remove in-band reflection artifacts. Experimental results using phantom and ex vivo colorectal tissue are provided to prove validity of the algorithm.
关键词adaptive denoising backward RTS smoother modified Kalman filter photoacoustic imaging
URL查看原文
收录类别SCI ; EI ; SCOPUS
语种英语
资助项目Double First-Class Initiative Fund of ShanghaiTech University[2022X0203-904-04] ; National Natural Science Foundation of China[61805139] ; Shanghai Clinical Research and Trial Center[2022A0305-418-02] ; United Imaging Intelligence[2019X0203-501-02]
WOS研究方向Biochemistry & Molecular Biology ; Biophysics ; Optics
WOS类目Biochemical Research Methods ; Biophysics ; Optics
WOS记录号WOS:000917199000001
出版者WILEY-V C H VERLAG GMBH
EI入藏号20230513463099
EI主题词Diagnosis
EI分类号461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 746 Imaging Techniques ; 751.1 Acoustic Waves ; 921 Mathematics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/278846
专题信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
通讯作者Gao, Feng; Gao, Fei
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China
2.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
3.Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Hu, Tianqu,Huang, Zihao,Ge, Peng,et al. Adaptive denoising of photoacoustic signal and image based on modified Kalman filter[J]. JOURNAL OF BIOPHOTONICS,2023,16(5).
APA Hu, Tianqu,Huang, Zihao,Ge, Peng,Gao, Feng,&Gao, Fei.(2023).Adaptive denoising of photoacoustic signal and image based on modified Kalman filter.JOURNAL OF BIOPHOTONICS,16(5).
MLA Hu, Tianqu,et al."Adaptive denoising of photoacoustic signal and image based on modified Kalman filter".JOURNAL OF BIOPHOTONICS 16.5(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Tianqu]的文章
[Huang, Zihao]的文章
[Ge, Peng]的文章
百度学术
百度学术中相似的文章
[Hu, Tianqu]的文章
[Huang, Zihao]的文章
[Ge, Peng]的文章
必应学术
必应学术中相似的文章
[Hu, Tianqu]的文章
[Huang, Zihao]的文章
[Ge, Peng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1002@jbio.202200362.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。