Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone
2018-08
发表期刊BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS (IF:2.6[JCR-2023],3.6[5-Year])
ISSN1874-9399
卷号1861期号:8页码:743-751
发表状态已发表
DOI10.1016/j.bbagrm.2018.07.002
摘要Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.
关键词Nucleoplasmin Magnetic tweezers DNA condensation Decondensation Chromatin remodeling
收录类别SCI ; SCIE
语种英语
资助项目earmarked fund for Modern Agro-Industry Technology Research System in China[CARS-44]
WOS研究方向Biochemistry & Molecular Biology ; Biophysics
WOS类目Biochemistry & Molecular Biology ; Biophysics
WOS记录号WOS:000441649200007
出版者ELSEVIER SCIENCE BV
WOS关键词XENOPUS-LAEVIS OOCYTES ; PHYSIOLOGICAL IONIC-STRENGTH ; ATOMIC-FORCE MICROSCOPY ; ASSEMBLY IN-VITRO ; EGG EXTRACTS ; SPERM DECONDENSATION ; HISTONE COMPLEXES ; NUCLEAR CHAPERONE ; ACIDIC PROTEIN ; CORE PARTICLE
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/27692
专题生命科学与技术学院_PI研究组_孙博组
通讯作者Sun, Bo; Li, Jian-Ke
作者单位
1.Chinese Acad Agr Sci, Inst Apicultural Res, Minist Agr, Key Lab Pollinating Insect Biol, Beijing 100081, Peoples R China
2.Chinese Acad Sci, Inst Genet & Dev Biol, Lab Mol Dev Biol, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
4.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
通讯作者单位生命科学与技术学院
推荐引用方式
GB/T 7714
Huo, Xin-Mei,Meng, Li-feng,Jiang, Tao,et al. Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone[J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS,2018,1861(8):743-751.
APA Huo, Xin-Mei.,Meng, Li-feng.,Jiang, Tao.,Li, Ming.,Sun, Fang-Zhen.,...&Li, Jian-Ke.(2018).Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone.BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS,1861(8),743-751.
MLA Huo, Xin-Mei,et al."Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone".BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 1861.8(2018):743-751.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huo, Xin-Mei]的文章
[Meng, Li-feng]的文章
[Jiang, Tao]的文章
百度学术
百度学术中相似的文章
[Huo, Xin-Mei]的文章
[Meng, Li-feng]的文章
[Jiang, Tao]的文章
必应学术
必应学术中相似的文章
[Huo, Xin-Mei]的文章
[Meng, Li-feng]的文章
[Jiang, Tao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 27692.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。