ShanghaiTech University Knowledge Management System
Angora: Efficient Fuzzing by Principled Search | |
2018 | |
会议录名称 | 2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP)
![]() |
ISSN | 2375-1207 |
卷号 | 2018-May |
页码 | 711-725 |
发表状态 | 已发表 |
DOI | 10.1109/SP.2018.00046 |
摘要 | Fuzzing is a popular technique for finding software bugs. However, the performance of the state-of-the-art fuzzers leaves a lot to be desired. Fuzzers based on symbolic execution produce quality inputs but run slow, while fuzzers based on random mutation run fast but have difficulty producing quality inputs. We propose Angora, a new mutation-based fuzzer that outperforms the state-of-the-art fuzzers by a wide margin. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution. To solve path constraints efficiently, we introduce several key techniques: scalable byte-level taint tracking, context-sensitive branch count, search based on gradient descent, and input length exploration. On the LAVA-M data set, Angora found almost all the injected bugs, found more bugs than any other fuzzer that we compared with, and found eight times as many bugs as the second-best fuzzer in the program who. Angora also found 103 bugs that the LAVA authors injected but could not trigger. We also tested Angora on eight popular, mature open source programs. Angora found 6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump and size, respectively. We measured the coverage of Angora and evaluated how its key techniques contribute to its impressive performance. |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | San Francisco, CA, United states |
会议日期 | 20-24 May 2018 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000442163200042 |
出版者 | IEEE |
EI入藏号 | 20183205666090 |
EI主题词 | Model checking ; Open source software |
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/27574 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
通讯作者 | Chen, Peng |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Univ Calif Davis, Davis, CA 95616 USA |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chen, Peng,Chen, Hao. Angora: Efficient Fuzzing by Principled Search[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:711-725. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Peng]的文章 |
[Chen, Hao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Peng]的文章 |
[Chen, Hao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Peng]的文章 |
[Chen, Hao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。