Angora: Efficient Fuzzing by Principled Search
2018
会议录名称2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP)
ISSN2375-1207
卷号2018-May
页码711-725
发表状态已发表
DOI10.1109/SP.2018.00046
摘要Fuzzing is a popular technique for finding software bugs. However, the performance of the state-of-the-art fuzzers leaves a lot to be desired. Fuzzers based on symbolic execution produce quality inputs but run slow, while fuzzers based on random mutation run fast but have difficulty producing quality inputs. We propose Angora, a new mutation-based fuzzer that outperforms the state-of-the-art fuzzers by a wide margin. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution. To solve path constraints efficiently, we introduce several key techniques: scalable byte-level taint tracking, context-sensitive branch count, search based on gradient descent, and input length exploration. On the LAVA-M data set, Angora found almost all the injected bugs, found more bugs than any other fuzzer that we compared with, and found eight times as many bugs as the second-best fuzzer in the program who. Angora also found 103 bugs that the LAVA authors injected but could not trigger. We also tested Angora on eight popular, mature open source programs. Angora found 6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump and size, respectively. We measured the coverage of Angora and evaluated how its key techniques contribute to its impressive performance.
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点San Francisco, CA, United states
会议日期20-24 May 2018
URL查看原文
收录类别EI ; CPCI-S ; CPCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000442163200042
出版者IEEE
EI入藏号20183205666090
EI主题词Model checking ; Open source software
EI分类号Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/27574
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Chen, Peng
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Univ Calif Davis, Davis, CA 95616 USA
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Peng,Chen, Hao. Angora: Efficient Fuzzing by Principled Search[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:711-725.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Peng]的文章
[Chen, Hao]的文章
百度学术
百度学术中相似的文章
[Chen, Peng]的文章
[Chen, Hao]的文章
必应学术
必应学术中相似的文章
[Chen, Peng]的文章
[Chen, Hao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@SP.2018.00046.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。