Human-Object Interaction Detection via Disentangled Transformer
2022
会议录名称2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022)
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR52688.2022.01896
摘要Human-Object Interaction Detection tackles the problem of joint localization and classification of human object interactions. Existing HOI transformers either adopt a single decoder for triplet prediction, or utilize two parallel decoders to detect individual objects and interactions separately, and compose triplets by a matching process. In contrast, we decouple the triplet prediction into human-object pair detection and interaction classification. Our main motivation is that detecting the human-object instances and classifying interactions accurately needs to learn representations that focus on different regions. To this end, we present Disentangled Transformer, where both encoder and decoder are disentangled to facilitate learning of two subtasks. To associate the predictions of disentangled decoders, we first generate a unified representation for HOI triplets with a base decoder, and then utilize it as input feature of each disentangled decoder. Extensive experiments show that our method outperforms prior work on two public HOI benchmarks by a sizeable margin. Code will be available.
会议名称IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点null,New Orleans,LA
会议日期JUN 18-24, 2022
URL查看原文
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870783005037
出版者IEEE COMPUTER SOC
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/266587
专题信息科学与技术学院_硕士生
通讯作者Zhou, Desen
作者单位
1.Baidu Inc, Dept Comp Vis Technol Vis, Beijing, Peoples R China
2.ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Desen,Liu, Zhichao,Wang, Jian,et al. Human-Object Interaction Detection via Disentangled Transformer[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhou, Desen]的文章
[Liu, Zhichao]的文章
[Wang, Jian]的文章
百度学术
百度学术中相似的文章
[Zhou, Desen]的文章
[Liu, Zhichao]的文章
[Wang, Jian]的文章
必应学术
必应学术中相似的文章
[Zhou, Desen]的文章
[Liu, Zhichao]的文章
[Wang, Jian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.01896.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。