ShanghaiTech University Knowledge Management System
Human-Object Interaction Detection via Disentangled Transformer | |
2022 | |
会议录名称 | 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022)
![]() |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01896 |
摘要 | Human-Object Interaction Detection tackles the problem of joint localization and classification of human object interactions. Existing HOI transformers either adopt a single decoder for triplet prediction, or utilize two parallel decoders to detect individual objects and interactions separately, and compose triplets by a matching process. In contrast, we decouple the triplet prediction into human-object pair detection and interaction classification. Our main motivation is that detecting the human-object instances and classifying interactions accurately needs to learn representations that focus on different regions. To this end, we present Disentangled Transformer, where both encoder and decoder are disentangled to facilitate learning of two subtasks. To associate the predictions of disentangled decoders, we first generate a unified representation for HOI triplets with a base decoder, and then utilize it as input feature of each disentangled decoder. Extensive experiments show that our method outperforms prior work on two public HOI benchmarks by a sizeable margin. Code will be available. |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,New Orleans,LA |
会议日期 | JUN 18-24, 2022 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870783005037 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/266587 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Zhou, Desen |
作者单位 | 1.Baidu Inc, Dept Comp Vis Technol Vis, Beijing, Peoples R China 2.ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Desen,Liu, Zhichao,Wang, Jian,et al. Human-Object Interaction Detection via Disentangled Transformer[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。