ShanghaiTech University Knowledge Management System
An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation | |
2023-02-01 | |
发表期刊 | IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year]) |
ISSN | 2168-2208 |
卷号 | 27期号:2页码:1-12 |
发表状态 | 已发表 |
DOI | 10.1109/JBHI.2022.3223106 |
摘要 | High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach scale-specific projection between LR and HR images, thus these methods can only deal with fixed up-sampling rates. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the LR image and the HR image are represented using the same implicit neural voxel function with different sampling rates. Due to the continuity of the learned implicit function, a single ArSSR model is able to achieve arbitrary and infinite up-sampling rate reconstructions of HR images from any input LR image. Then the SR task is converted to approach the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales. |
URL | 查看原文 |
收录类别 | EI ; SCOPUS ; SCI |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256356 |
专题 | iHuman研究所 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China 3.Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 4.School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China 5.School of Information Science and Technology and iHuman Institute, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Qing Wu,Yuwei Li,Yawen Sun,et al. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2023,27(2):1-12. |
APA | Qing Wu.,Yuwei Li.,Yawen Sun.,Yan Zhou.,Hongjiang Wei.,...&Yuyao Zhang.(2023).An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,27(2),1-12. |
MLA | Qing Wu,et al."An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 27.2(2023):1-12. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Qing Wu]的文章 |
[Yuwei Li]的文章 |
[Yawen Sun]的文章 |
百度学术 |
百度学术中相似的文章 |
[Qing Wu]的文章 |
[Yuwei Li]的文章 |
[Yawen Sun]的文章 |
必应学术 |
必应学术中相似的文章 |
[Qing Wu]的文章 |
[Yuwei Li]的文章 |
[Yawen Sun]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。