ShanghaiTech University Knowledge Management System
基于深度学习的红外遥感信息自动提取 | |
其他题名 | Automatic Extraction of Infrared Remote Sensing Information Based on Deep Learning |
2017-08-10 | |
发表期刊 | 红外 |
ISSN | 1672-8785 |
卷号 | 38期号:08页码:37-43 |
DOI | 10.3969/j.issn.1672-8785.2017.08.008 |
摘要 | 为了提高红外遥感图像地物信息自动提取的精确性,同时避免人工提取遥感信息的低效性,提出了一种基于UNet深度学习模型的遥感信息提取算法。该算法用于从红外遥感图像中分割出5类地物信息(包括道路、建筑、树木、农田和水体)。首先,对分辨率高但数量较少的训练数据进行小像幅的随机裁剪,并对其进行相应的数据增强处理。然后搭建UNet深度学习模型,并用它自动提取遥感图像的特征信息。采用交叉熵损失函数以及Adam反向传播优化算法对该模型进行训练,并对测试样本中的5幅遥感图像进行精确的地物信息提取。最后,运用Jaccard指数对测试结果进行精度评定。实验结果表明,该方法对高分辨率红外遥感图像信息和可见光遥感图像信息进行了充分融合,对于不同种类地物的定位和分类都取得了较高精度。 |
关键词 | 深度学习 UNet 语义分割 多光谱遥感 |
URL | 查看原文 |
语种 | 中文 |
原始文献类型 | 学术期刊 |
来源库 | WanFang |
中图分类号 | TP751 |
资助机构 | 中国科学院上海技术物理研究所创新专项 |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/255578 |
专题 | 信息科学与技术学院_硕士生 |
作者单位 | 1.中国科学院上海技术物理研究所; 2.上海科技大学信息科学与技术学院 |
第一作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | 陈睿敏,孙胜利. 基于深度学习的红外遥感信息自动提取[J]. 红外,2017,38(08):37-43. |
APA | 陈睿敏,&孙胜利.(2017).基于深度学习的红外遥感信息自动提取.红外,38(08),37-43. |
MLA | 陈睿敏,et al."基于深度学习的红外遥感信息自动提取".红外 38.08(2017):37-43. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[陈睿敏]的文章 |
[孙胜利]的文章 |
百度学术 |
百度学术中相似的文章 |
[陈睿敏]的文章 |
[孙胜利]的文章 |
必应学术 |
必应学术中相似的文章 |
[陈睿敏]的文章 |
[孙胜利]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。