ShanghaiTech University Knowledge Management System
Dynamic Grained Encoder for Vision Transformers | |
2021 | |
会议录名称 | ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS |
ISSN | 1049-5258 |
卷号 | 7 |
页码 | 5770-5783 |
发表状态 | 已发表 |
DOI | 暂无 |
摘要 | Transformers, the de-facto standard for language modeling, have been recently applied for vision tasks. This paper introduces sparse queries for vision transformers to exploit the intrinsic spatial redundancy of natural images and save computational costs. Specifically, we propose a Dynamic Grained Encoder for vision transformers, which can adaptively assign a suitable number of queries to each spatial region. Thus it achieves a fine-grained representation in discriminative regions while keeping high efficiency. Besides, the dynamic grained encoder is compatible with most vision transformer frameworks. Without bells and whistles, our encoder allows the state-of-the-art vision transformers to reduce computational complexity by 40%-60% while maintaining comparable performance on image classification. Extensive experiments on object detection and segmentation further demonstrate the generalizability of our approach. Code is available at https://github.com/StevenGrove/vtpack. © 2021 Neural information processing systems foundation. All rights reserved. |
关键词 | Modeling languages Object detection Computational costs De facto standard Fine grained Higher efficiency Language model Natural images Performance Spatial redundancy Spatial regions State of the art |
会议名称 | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
会议地点 | Virtual, Online |
会议日期 | December 6, 2021 - December 14, 2021 |
收录类别 | EI |
语种 | 英语 |
出版者 | Neural information processing systems foundation |
EI入藏号 | 20222412223132 |
EI主题词 | Signal encoding |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251938 |
专题 | 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_博士生 |
作者单位 | 1.College of Artificial Intelligence, Xi'an Jiaotong University, China; 2.ShanghaiTech University, China; 3.Megvii Inc. (Face++); 4.University of Chinese Academy of Sciences, China; 5.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China |
推荐引用方式 GB/T 7714 | Song, Lin,Zhang, Songyang,Liu, Songtao,et al. Dynamic Grained Encoder for Vision Transformers[C]:Neural information processing systems foundation,2021:5770-5783. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。