An End-to-end Computer Vision System Architecture
2022-05-27
会议录名称2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
ISSN0271-4302
发表状态已发表
DOI10.1109/ISCAS48785.2022.9937670
摘要To overcome the data movement bottleneck, near-sensor and in-sensor computing are becoming more and more popular. However, in the existing near-/in-sensor computing architectures for vision tasks, the effect of the image signal processing (ISP) pipeline, which is of great importance to the final vision performance [1], is always ignored. In this work, we propose a synthesized RAW image-based end-to-end computer vision paradigm, taking the effect of ISP pipeline into account. In the proposed approach, a generative adversarial network (GAN)-based tool is used to convert the fully processed color images to their corresponding RAW Bayer versions, generating the training data for end-to-end vision models. In the inference stage, RAW images from the sensor are directly fed to the end-to-end model, bypassing the entire ISP pipeline. Experimental results show that by training/tuning the CNN models using synthesized RAW images, it is possible to design an end-to-end (from RAW image to vision task) vision system that directly consumes RAW image data from the sensor with negligible vision performance degradation. By skipping the ISP pipeline, an image sensor can be directly integrated with the back-end vision processor without a complex image processor in the middle, making near-/in-sensor computing a practical approach.
关键词Near-sensor in-sensor Bayer pattern images image signal processing (ISP) generative adversarial network(GAN) computer vision
会议地点Austin, TX, USA
会议日期27 May-1 June 2022
URL查看原文
收录类别EI
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251919
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_博士生
作者单位
ShanghaiTech University, School of Information Science and Technology, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Ling,Zhou, Wei,Zhang, Xiangyu,et al. An End-to-end Computer Vision System Architecture[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Ling]的文章
[Zhou, Wei]的文章
[Zhang, Xiangyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Ling]的文章
[Zhou, Wei]的文章
[Zhang, Xiangyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Ling]的文章
[Zhou, Wei]的文章
[Zhang, Xiangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。