Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization
2020-02-01
会议录名称ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA (IF:4.0[JCR-2023],3.9[5-Year])
ISSN1556-4681
卷号14
期号2
发表状态已发表
DOI10.1145/3372407
摘要

Social Internet of Things has recently become a promising paradigm for augmenting the capability of humans and devices connected in the networks to provide services. In social Internet of Things network, crowdsourcing that collects the intelligence of the human crowd has served as a powerful tool for data acquisition and distributed computing. To support critical applications (e.g., a recommendation system and assessing the inequality of urban perception), in this article, we shall focus on the collaborative ranking problems for user preference prediction from crowdsourced pairwise comparisons. Based on the Bradley-Terry-Luce (BTL) model, a maximum likelihood estimation (MLE) is proposed via low-rank approach in order to estimate the underlying weight/score matrix, thereby predicting the ranking list for each user. A novel regularized formulation with the smoothed surrogate of elementwise infinity norm is proposed in order to address the unique challenge of the coupled the non-smooth elementwise infinity norm constraint and non-convex low-rank constraint in the MLE problem. We solve the resulting smoothed rank-constrained optimization problem via developing the Riemannian trust-region algorithm on quotient manifolds of fixed-rank matrices, which enjoys the superlinear convergence rate. The admirable performance and algorithmic advantages of the proposed method over the state-of-the-art algorithms are demonstrated via numerical results. Moreover, the proposed method outperforms state-of-the-art algorithms on large collaborative filtering datasets in both success rate of inferring preference and normalized discounted cumulative gain. © 2020 Association for Computing Machinery.

关键词Crowdsourcing Collaborative filtering Data acquisition Matrix algebra Maximum likelihood estimation Constrained optimization Numerical methods Large dataset Constrained optimi-zation problems Crowdsourced data Matrix manifolds Pair-wise comparison Ranking Riemannian optimizations State-of-the-art algorithms Superlinear convergence rate
收录类别EI
语种英语
出版者Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States
EI入藏号20200908218228
EI主题词Internet of things
EISSN1556-472X
EI分类号722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis ; 921.1 Algebra ; 921.6 Numerical Methods ; 922 Statistical Methods ; 961 Systems Science
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251837
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
作者单位
Shanghai Tech University, Shanghai; 201210, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Dong, Jialin,Yang, Kai,Shi, Yuanming. Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization[C]:Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
百度学术
百度学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
必应学术
必应学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。