ShanghaiTech University Knowledge Management System
Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network | |
2019-04-01 | |
会议录名称 | PROCEEDINGS - INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING |
ISSN | 1945-7928 |
卷号 | 2019-April |
页码 | 741-744 |
发表状态 | 已发表 |
DOI | 10.1109/ISBI.2019.8759438 |
摘要 | Diffusive light scattering in biological tissue causes a heterogeneous and variable spectrum of light fluence, which is a significant challenge to predict due to unknown optical properties of tissues. Then it is difficult to accurately and quantitatively image blood oxygen saturation (sO) in photoacoustic imaging because of unknown fluence distribution. To tackle this problem, we develop a deep residual, and recurrent neural network, i.e., DR2U-net for the quantitative estimation of blood oxygenation of photoacoustic imaging. The fine-tuned DR2U-net we developed can extract fluence distribution information from optical absorption images only using two wavelengths of light in Monte Carlo simulation, and afterward generate a quantitative image of sO. The measurement results of sO show a very high accuracy by testing in simulated biological tissue, and its error is as low as 1.27% compared with conventional linear mixing method (48.76%). Besides, our model is high-speed, about 18. 4ms is achieved for every quantitative sO2 image. © 2019 IEEE. |
会议录编者/会议主办者 | et al. ; IEEE Engineering in Medicine and Biology Society (EMB) ; IEEE Signal Processing Society ; The Institute of Electrical and Electronics Engineers (IEEE) ; UAI ; United Imaging Intelligence |
关键词 | Blood Light scattering Intelligent systems Deep neural networks Photoacoustic effect Tissue Optical properties Monte Carlo methods Blood oxygen saturation Diffusive light scattering Fluence distribution Optical absorption images Photo-acoustic imaging Quantitative estimation Quantitative images Residual recurrent u-net |
会议名称 | 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 |
会议地点 | Venice, Italy |
会议日期 | April 8, 2019 - April 11, 2019 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20193207270353 |
EI主题词 | Recurrent neural networks |
EISSN | 1945-8452 |
EI分类号 | 461.2 Biological Materials and Tissue Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 741.1 Light/Optics ; 751.1 Acoustic Waves ; 922.2 Mathematical Statistics |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251831 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Changchun Yang,Hengrong Lan,Hongtao Zhong,et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network[C]//et al., IEEE Engineering in Medicine and Biology Society (EMB), IEEE Signal Processing Society, The Institute of Electrical and Electronics Engineers (IEEE), UAI, United Imaging Intelligence:IEEE Computer Society,2019:741-744. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。