Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network
2019-04-01
会议录名称PROCEEDINGS - INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
卷号2019-April
页码741-744
发表状态已发表
DOI10.1109/ISBI.2019.8759438
摘要

Diffusive light scattering in biological tissue causes a heterogeneous and variable spectrum of light fluence, which is a significant challenge to predict due to unknown optical properties of tissues. Then it is difficult to accurately and quantitatively image blood oxygen saturation (sO) in photoacoustic imaging because of unknown fluence distribution. To tackle this problem, we develop a deep residual, and recurrent neural network, i.e., DR2U-net for the quantitative estimation of blood oxygenation of photoacoustic imaging. The fine-tuned DR2U-net we developed can extract fluence distribution information from optical absorption images only using two wavelengths of light in Monte Carlo simulation, and afterward generate a quantitative image of sO. The measurement results of sO show a very high accuracy by testing in simulated biological tissue, and its error is as low as 1.27% compared with conventional linear mixing method (48.76%). Besides, our model is high-speed, about 18. 4ms is achieved for every quantitative sO2 image. © 2019 IEEE.

会议录编者/会议主办者et al. ; IEEE Engineering in Medicine and Biology Society (EMB) ; IEEE Signal Processing Society ; The Institute of Electrical and Electronics Engineers (IEEE) ; UAI ; United Imaging Intelligence
关键词Blood Light scattering Intelligent systems Deep neural networks Photoacoustic effect Tissue Optical properties Monte Carlo methods Blood oxygen saturation Diffusive light scattering Fluence distribution Optical absorption images Photo-acoustic imaging Quantitative estimation Quantitative images Residual recurrent u-net
会议名称16th IEEE International Symposium on Biomedical Imaging, ISBI 2019
会议地点Venice, Italy
会议日期April 8, 2019 - April 11, 2019
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20193207270353
EI主题词Recurrent neural networks
EISSN1945-8452
EI分类号461.2 Biological Materials and Tissue Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 741.1 Light/Optics ; 751.1 Acoustic Waves ; 922.2 Mathematical Statistics
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251831
专题信息科学与技术学院
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Changchun Yang,Hengrong Lan,Hongtao Zhong,et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network[C]//et al., IEEE Engineering in Medicine and Biology Society (EMB), IEEE Signal Processing Society, The Institute of Electrical and Electronics Engineers (IEEE), UAI, United Imaging Intelligence:IEEE Computer Society,2019:741-744.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Changchun Yang]的文章
[Hengrong Lan]的文章
[Hongtao Zhong]的文章
百度学术
百度学术中相似的文章
[Changchun Yang]的文章
[Hengrong Lan]的文章
[Hongtao Zhong]的文章
必应学术
必应学术中相似的文章
[Changchun Yang]的文章
[Hengrong Lan]的文章
[Hongtao Zhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。